Administrative Supplement to 1R03MH105765: Neuropsychiatric Classification via Connectivity and Machine Learning
1R03MH105765 的行政补充:通过连接和机器学习进行神经精神分类
基本信息
- 批准号:9076865
- 负责人:
- 金额:$ 3.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-27 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAdultAlgorithmsAmygdaloid structureAnteriorArbitrationArchitectureBackBase of the BrainBehaviorBehavioralBiological Neural NetworksBiologyBipolar DisorderBrainCategoriesChronic SchizophreniaClassificationClinicalComplexCorpus striatum structureDataData AnalysesData CollectionData SetDevelopmentDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDiseaseEtiologyFrequenciesFunctional Magnetic Resonance ImagingFunctional disorderHealthHeterogeneityHumanHuman ResourcesHybridsIndividualInterventionMachine LearningMajor Depressive DisorderMapsMeasuresMental disordersMetabolicMethodologyNational Institute of Mental HealthNeurosciencesObsessive-Compulsive DisorderOutcomePathologyPatientsPatternPerformancePhenotypePlaguePost-Traumatic Stress DisordersProcessPsychiatric DiagnosisQuality ControlResearch Domain CriteriaRestScanningSchemeSchizophreniaScienceSecondary toSeedsSignal TransductionSpeedSurrogate MarkersSymptomsSystemTestingTranslatingValidationWorkbaseblood oxygen level dependentcase controlcingulate cortexclinical Diagnosiscostdisease classificationinfancyinnovationinsightneuroimagingneuropsychiatrynovelrelating to nervous systemtool
项目摘要
DESCRIPTION (provided by applicant): The diagnostic system for neuropsychiatric conditions embodied in the Diagnostic and Statistical Manual of Psychiatric Disorders (DSM) is based on clusters of symptoms rather than on underlying etiology or pathophysiology. The establishment of reliable diagnoses was a critical step in the advancement of psychiatric science three decades ago, but now it holds the field back by concealing relationships between brain biology and individual patients' symptoms - relationships that are obscure under the best of circumstances. This realization motivates a search for an alternative, brain-based diagnostic system, in the form of the NIMH's Research Domain Criteria (RDoC) initiative. The development of such an alternative diagnostic framework is in its infancy, and new strategies are needed for the rational categorization of pathophysiological states. We have successfully used data-driven analysis of functional connectivity data, derived from functional neuroimaging of the brain at rest. This approach has revealed neural dysconnectivity across several neuropsychiatric conditions. We will apply these data-driven approaches, in conjunction with leading machine learning algorithms, to quantify dysconnectivity patterns across and within major DSM disorders. We have assembled a dataset of 707 resting-state scans, performed on state-of-the-art 3T scanners and passing rigorous quality control standards, comprising five major DSM diagnoses: schizophrenia, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, and post-traumatic stress disorder, with matched controls for each. Accompanying symptom assessments were administered by highly skilled personnel. This large hybrid dataset permits an unprecedented cross-diagnostic, data-driven search for shared or distinct dysconnectivity across diagnoses. Specifically, we will employ a powerful multi-tiered analytic approach using: fully data-driven connectivity analysis, focusing on networks defined a priori by work in healthy subjects, and a seed-based approach focused on circuits associated with the constituent DSM diagnoses. We hypothesize several possible outcomes. First, patient groups derived from the data-driven connectivity analyses may indeed map onto symptom-based DSM diagnoses. This would be a validation of a symptom- focused nosology, at least across these conditions. Second, data-driven analysis may identify new categories that cut across DSM diagnoses. Third, results may follow continua of dysconnectivity, such as those proposed by the RDoC framework. A more complex outcome that blends these patterns is also probable. Finally, emergent patterns will be correlated against symptom measures, within and across disorders. Irrespective of the ultimate pattern, results of this project will critically inform ongoing effort to refine a diagnostic scheme for psychiatric disorders that is firmly grounded in their pathophysiology. Furthermore, the methodology will be applicable to other datasets. We anticipate that this approach will provide a key pillar to the development of a brain-based understanding of the heterogeneity of psychiatric disease.
描述(由申请人提供):精神疾病诊断和统计手册(DSM)中体现的神经精神疾病的诊断系统是基于症状群,而不是基于潜在的病因学或病理生理学。30年前,建立可靠的诊断是精神病学科学进步的关键一步,但现在,它掩盖了大脑生物学和个体患者症状之间的关系,从而阻碍了该领域的发展--这种关系在最好的情况下也是模糊的。这一认识促使人们以NIMH的研究领域标准(RDoC)倡议的形式寻找一种替代的、基于大脑的诊断系统。这种替代诊断框架的发展还处于起步阶段,需要新的策略对病理生理状态进行合理的分类。 我们已经成功地使用了数据驱动的功能连接数据分析,来自休息时大脑的功能神经成像。这种方法揭示了几种神经精神疾病的神经连接障碍。我们将应用这些数据驱动的方法,结合领先的机器学习算法,来量化主要DSM疾病之间和内部的连接障碍模式。 我们已经收集了707个静息状态扫描的数据集,这些扫描是在最先进的3 T扫描仪上进行的,并通过了严格的质量控制标准,包括五种主要的DSM诊断:精神分裂症,双相情感障碍,重度抑郁症,强迫症和创伤后应激障碍,每种都有匹配的对照。伴随症状评估由高技能人员进行。这个大型混合数据集允许前所未有的跨诊断,数据驱动搜索跨诊断的共享或不同的连接障碍。具体来说,我们将采用一种强大的多层分析方法,使用:完全数据驱动的连接分析,重点是通过健康受试者的工作先验定义的网络,以及基于种子的方法,重点是与组成DSM诊断相关的电路。 我们假设了几种可能的结果。首先,从数据驱动的连接性分析中得出的患者群体确实可以映射到基于DSM的DSM诊断。这将是一个以症状为中心的疾病分类学的验证,至少在这些条件下。第二,数据驱动的分析可以识别贯穿DSM诊断的新类别。第三,结果可能遵循连续的连接障碍,如RDoC框架提出的那些。混合这些模式的更复杂的结果也是可能的。最后,紧急模式将与症状措施,内部和跨疾病。 无论最终的模式,这个项目的结果将严格通知正在进行的努力,以完善一个诊断方案,精神疾病是牢固地建立在他们的病理生理学。此外,该方法将适用于其他数据集。我们预计,这种方法将提供一个关键支柱的发展,以大脑为基础的理解异质性的精神疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALAN ANTICEVIC其他文献
ALAN ANTICEVIC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALAN ANTICEVIC', 18)}}的其他基金
A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
- 批准号:
10248465 - 财政年份:2019
- 资助金额:
$ 3.53万 - 项目类别:
A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
- 批准号:
10021712 - 财政年份:2019
- 资助金额:
$ 3.53万 - 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
- 批准号:
10543781 - 财政年份:2018
- 资助金额:
$ 3.53万 - 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
- 批准号:
10311477 - 财政年份:2018
- 资助金额:
$ 3.53万 - 项目类别:
Development of Thalamocortical Circuits and Cognitive Function in Healthy Individuals and Youth At-Risk for Psychosis
健康个体和有精神病风险的青少年丘脑皮质回路和认知功能的发展
- 批准号:
9893033 - 财政年份:2018
- 资助金额:
$ 3.53万 - 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
- 批准号:
10215418 - 财政年份:2017
- 资助金额:
$ 3.53万 - 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
- 批准号:
9910455 - 财政年份:2017
- 资助金额:
$ 3.53万 - 项目类别:
Characterizing Schizophrenia Progression via Multi-modal Neuroimaging and Computation
通过多模式神经影像和计算表征精神分裂症进展
- 批准号:
9272935 - 财政年份:2016
- 资助金额:
$ 3.53万 - 项目类别:
Neuropsychiatric Classification via Connectivity and Machine Learning
通过连接和机器学习进行神经精神分类
- 批准号:
8808026 - 财政年份:2014
- 资助金额:
$ 3.53万 - 项目类别:
Characterizing Cognitive Impairment in Schizophrenia via Computational Modeling a
通过计算模型描述精神分裂症的认知障碍
- 批准号:
8715432 - 财政年份:2012
- 资助金额:
$ 3.53万 - 项目类别:
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 3.53万 - 项目类别: