Neuropsychiatric Classification via Connectivity and Machine Learning

通过连接和机器学习进行神经精神分类

基本信息

  • 批准号:
    8808026
  • 负责人:
  • 金额:
    $ 7.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-27 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The diagnostic system for neuropsychiatric conditions embodied in the Diagnostic and Statistical Manual of Psychiatric Disorders (DSM) is based on clusters of symptoms rather than on underlying etiology or pathophysiology. The establishment of reliable diagnoses was a critical step in the advancement of psychiatric science three decades ago, but now it holds the field back by concealing relationships between brain biology and individual patients' symptoms - relationships that are obscure under the best of circumstances. This realization motivates a search for an alternative, brain-based diagnostic system, in the form of the NIMH's Research Domain Criteria (RDoC) initiative. The development of such an alternative diagnostic framework is in its infancy, and new strategies are needed for the rational categorization of pathophysiological states. We have successfully used data-driven analysis of functional connectivity data, derived from functional neuroimaging of the brain at rest. This approach has revealed neural dysconnectivity across several neuropsychiatric conditions. We will apply these data-driven approaches, in conjunction with leading machine learning algorithms, to quantify dysconnectivity patterns across and within major DSM disorders. We have assembled a dataset of 707 resting-state scans, performed on state-of-the-art 3T scanners and passing rigorous quality control standards, comprising five major DSM diagnoses: schizophrenia, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, and post-traumatic stress disorder, with matched controls for each. Accompanying symptom assessments were administered by highly skilled personnel. This large hybrid dataset permits an unprecedented cross-diagnostic, data-driven search for shared or distinct dysconnectivity across diagnoses. Specifically, we will employ a powerful multi-tiered analytic approach using: fully data-driven connectivity analysis, focusing on networks defined a priori by work in healthy subjects, and a seed-based approach focused on circuits associated with the constituent DSM diagnoses. We hypothesize several possible outcomes. First, patient groups derived from the data-driven connectivity analyses may indeed map onto symptom-based DSM diagnoses. This would be a validation of a symptom- focused nosology, at least across these conditions. Second, data-driven analysis may identify new categories that cut across DSM diagnoses. Third, results may follow continua of dysconnectivity, such as those proposed by the RDoC framework. A more complex outcome that blends these patterns is also probable. Finally, emergent patterns will be correlated against symptom measures, within and across disorders. Irrespective of the ultimate pattern, results of this project will critically inform ongoing effort to refine a diagnostic scheme for psychiatric disorders that is firmly grounded in their pathophysiology. Furthermore, the methodology will be applicable to other datasets. We anticipate that this approach will provide a key pillar to the development of a brain-based understanding of the heterogeneity of psychiatric disease.
描述(由申请人提供):精神疾病诊断和统计手册(DSM)中体现的神经精神疾病的诊断系统是基于症状的集群,而不是基于潜在的病因学或病理生理学。三十年前,可靠诊断的建立是精神病学进步的关键一步,但现在,由于隐藏了大脑生物学和个体患者症状之间的关系,这种关系在最好的情况下也是模糊的,因此阻碍了这一领域的发展。这种认识促使人们以NIMH的研究领域标准(RDoC)计划的形式,寻找一种替代的、基于大脑的诊断系统。这种替代诊断框架的发展尚处于起步阶段,需要对病理生理状态进行合理分类的新策略。我们已经成功地使用了数据驱动的功能连接数据分析,这些数据来源于休息时大脑的功能神经成像。这种方法揭示了几种神经精神疾病的神经连接障碍。我们将应用这些数据驱动的方法,结合领先的机器学习算法,量化主要DSM障碍之间和内部的连接障碍模式。我们收集了707个静态扫描数据集,使用最先进的3T扫描仪进行扫描,并通过严格的质量控制标准,包括DSM的五种主要诊断:精神分裂症、双相情感障碍、重度抑郁症、强迫症和创伤后应激障碍,每一种都有匹配的对照。伴随的症状评估由高技能人员管理。这个大型混合数据集允许前所未有的交叉诊断,数据驱动搜索跨诊断共享或独特的连接障碍。具体来说,我们将采用一种强大的多层分析方法:完全数据驱动的连通性分析,专注于健康受试者工作中先验定义的网络,以及基于种子的方法,专注于与DSM组成诊断相关的电路。我们假设了几种可能的结果。首先,从数据驱动的连接性分析中得出的患者群体可能确实映射到基于症状的DSM诊断。这将是一个以症状为中心的病分学的验证,至少在这些情况下。其次,数据驱动的分析可能会识别出与DSM诊断相吻合的新类别。第三,结果可能遵循连接障碍的连续性,如RDoC框架提出的那些。混合这些模式的更复杂的结果也是可能的。最后,紧急模式将与症状措施相关联,在内部和跨障碍。无论最终的模式如何,这个项目的结果将为正在进行的完善精神疾病诊断方案的努力提供重要信息,该方案牢固地建立在其病理生理学的基础上。此外,该方法将适用于其他数据集。我们预计,这种方法将为基于大脑的精神疾病异质性理解的发展提供一个关键支柱。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALAN ANTICEVIC其他文献

ALAN ANTICEVIC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALAN ANTICEVIC', 18)}}的其他基金

A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
  • 批准号:
    10248465
  • 财政年份:
    2019
  • 资助金额:
    $ 7.41万
  • 项目类别:
A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
  • 批准号:
    10021712
  • 财政年份:
    2019
  • 资助金额:
    $ 7.41万
  • 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
  • 批准号:
    10543781
  • 财政年份:
    2018
  • 资助金额:
    $ 7.41万
  • 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
  • 批准号:
    10311477
  • 财政年份:
    2018
  • 资助金额:
    $ 7.41万
  • 项目类别:
Development of Thalamocortical Circuits and Cognitive Function in Healthy Individuals and Youth At-Risk for Psychosis
健康个体和有精神病风险的青少年丘脑皮质回路和认知功能的发展
  • 批准号:
    9893033
  • 财政年份:
    2018
  • 资助金额:
    $ 7.41万
  • 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
  • 批准号:
    10215418
  • 财政年份:
    2017
  • 资助金额:
    $ 7.41万
  • 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
  • 批准号:
    9910455
  • 财政年份:
    2017
  • 资助金额:
    $ 7.41万
  • 项目类别:
Characterizing Schizophrenia Progression via Multi-modal Neuroimaging and Computation
通过多模式神经影像和计算表征精神分裂症进展
  • 批准号:
    9272935
  • 财政年份:
    2016
  • 资助金额:
    $ 7.41万
  • 项目类别:
Administrative Supplement to 1R03MH105765: Neuropsychiatric Classification via Connectivity and Machine Learning
1R03MH105765 的行政补充:通过连接和机器学习进行神经精神分类
  • 批准号:
    9076865
  • 财政年份:
    2014
  • 资助金额:
    $ 7.41万
  • 项目类别:
Characterizing Cognitive Impairment in Schizophrenia via Computational Modeling a
通过计算模型描述精神分裂症的认知障碍
  • 批准号:
    8715432
  • 财政年份:
    2012
  • 资助金额:
    $ 7.41万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了