Characterizing Cognitive Impairment in Schizophrenia via Computational Modeling a

通过计算模型描述精神分裂症的认知障碍

基本信息

  • 批准号:
    8715432
  • 负责人:
  • 金额:
    $ 35.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-25 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The field of psychiatry has made substantial progress towards understanding mental illness using basic neuroscience methods, but the explanatory gap between cellular hypotheses and clinical phenomena remains vast. This gap is particularly evident in our understanding of schizophrenia, a devastating disorder whose core feature is disrupted cognition. Schizophrenia patients present with debilitating cognitive deficits, not adequately treated by available therapies. Understanding and restoring cognitive function is critical to improving patients' lives. One way to close this gap is to investigate the clinical phenomena by combining several scientific methodologies, at multiple levels of analysis. Therefore, this proposal broadly aims to align functional neuroimaging with biophysically-realistic computational models of neural function and to test model predictions using safe and reversible pharmacological manipulations in healthy volunteers. It further aims to directly compare findings to deficits observed in schizophrenia patients. Ultimately, the current proposal will bridge levels of explanation to mechanistically understand cognitive dysfunction in schizophrenia. One severely compromised cognitive operation in schizophrenia is working memory: the ability to temporarily hold and manipulate information in mind. Disruptions in working memory compromise patients' ability to track thoughts, ideas, and feelings, severely limiting even basic functioning. Although functional neuroimaging studies repeatedly link working memory disturbances to prefrontal dysfunction, synaptic mechanisms remain elusive. One leading hypothesis proposes disruption in the balance of excitation and inhibition in cortical micro-circuitry caused by hypo-function of the N-methyl-D-aspartate (NMDA) glutamate receptor. However, to test this hypothesis in relation to disrupted cognition, and to ultimately develop medications that alleviate cognitive dysfunction in schizophrenia, we need to go a step beyond neuroimaging. We need an understanding of working memory dysfunction at the level of cellular mechanisms, which is where treatments are developed. The specific aims of this proposal are: i) to extend an established biophysically-realistic computational model of working memory to 'mimic' hypothesized NMDA receptor pathology and use it to make behavioral and neural predictions regarding deficits observed in schizophrenia; ii) experimentally test those predictions using a leading safe pharmacological model of schizophrenia that perturbs the precise mechanism in healthy volunteers, namely transient NMDA antagonism via ketamine; iii) to relate these pharmacological results to deficits observed in patients using behavior and functional neuroimaging. The proposed project will close the explanatory gap and help develop a multi-level mechanistic understanding of cognitive dysfunction in schizophrenia. Ultimately, the success of this research will fertilize rationally-guided treatments and improve the lives of people suffering from this devastating disorder.
描述(由申请人提供):精神病学领域在使用基本神经科学方法理解精神疾病方面取得了实质性进展,但细胞假说和临床现象之间的解释差距仍然很大。这一差距在我们对精神分裂症的理解中尤为明显,精神分裂症是一种毁灭性的疾病,其核心特征是认知障碍。精神分裂症患者存在衰弱的认知缺陷,没有得到现有治疗方法的充分治疗。了解和恢复认知功能是改善患者生活的关键。缩小这一差距的一种方法是通过在多个分析水平上结合几种科学方法来调查临床现象。因此,这项建议的主要目的是使功能神经成像与神经功能的生物物理现实计算模型保持一致,并使用安全和可逆的药物操作在健康志愿者中测试模型预测。它还旨在将研究结果与在精神分裂症患者中观察到的缺陷进行直接比较。最终,目前的提议将架起解释层面的桥梁,以机械地理解精神分裂症的认知功能障碍。精神分裂症患者的一种严重损害的认知操作是工作记忆:在脑海中暂时持有和操纵信息的能力。工作记忆的中断损害了患者追踪想法、想法和感觉的能力,甚至严重限制了基本功能。尽管功能神经成像研究一再将工作记忆障碍与前额叶功能障碍联系起来,但突触机制仍然难以捉摸。一个主要的假说提出,由于N-甲基-D-天冬氨酸(NMDA)谷氨酸受体功能低下,大脑皮质微电路的兴奋和抑制平衡被破坏。然而,为了测试这一假说与认知障碍的关系,并最终开发出缓解精神分裂症认知功能障碍的药物,我们需要超越神经成像。我们需要在细胞机制的水平上了解工作记忆障碍,这是开发治疗方法的地方。这项建议的具体目标是:i)扩展一个已建立的生物物理-现实工作记忆计算模型,以“模拟”假设的NMDA受体病理,并用它对精神分裂症中观察到的缺陷做出行为和神经预测;ii)使用领先的安全的精神分裂症药理学模型对这些预测进行实验验证,该模型扰乱了健康志愿者的精确机制,即通过氯胺酮进行短暂的NMDA拮抗;iii)将这些药理结果与患者使用行为和功能神经成像观察到的缺陷联系起来。拟议的项目将缩小解释上的差距,并有助于发展对精神分裂症认知功能障碍的多层次机械理解。最终,这项研究的成功将促进合理指导的治疗,并改善患有这种毁灭性疾病的人的生活。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALAN ANTICEVIC其他文献

ALAN ANTICEVIC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALAN ANTICEVIC', 18)}}的其他基金

A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
  • 批准号:
    10248465
  • 财政年份:
    2019
  • 资助金额:
    $ 35.48万
  • 项目类别:
A Translational and Neurocomputational Evaluation of a D1R Partial Agonist for Schizophrenia
D1R 部分激动剂治疗精神分裂症的转化和神经计算评估
  • 批准号:
    10021712
  • 财政年份:
    2019
  • 资助金额:
    $ 35.48万
  • 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
  • 批准号:
    10543781
  • 财政年份:
    2018
  • 资助金额:
    $ 35.48万
  • 项目类别:
Brain Network Changes Accompanying and Predicting Responses to Pharmacotherapy in OCD
伴随并预测强迫症药物治疗反应的大脑网络变化
  • 批准号:
    10311477
  • 财政年份:
    2018
  • 资助金额:
    $ 35.48万
  • 项目类别:
Development of Thalamocortical Circuits and Cognitive Function in Healthy Individuals and Youth At-Risk for Psychosis
健康个体和有精神病风险的青少年丘脑皮质回路和认知功能的发展
  • 批准号:
    9893033
  • 财政年份:
    2018
  • 资助金额:
    $ 35.48万
  • 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
  • 批准号:
    10215418
  • 财政年份:
    2017
  • 资助金额:
    $ 35.48万
  • 项目类别:
Mapping the Longitudinal Neurobiology of Early-course Schizophrenia
绘制早期精神分裂症的纵向神经生物学图谱
  • 批准号:
    9910455
  • 财政年份:
    2017
  • 资助金额:
    $ 35.48万
  • 项目类别:
Characterizing Schizophrenia Progression via Multi-modal Neuroimaging and Computation
通过多模式神经影像和计算表征精神分裂症进展
  • 批准号:
    9272935
  • 财政年份:
    2016
  • 资助金额:
    $ 35.48万
  • 项目类别:
Administrative Supplement to 1R03MH105765: Neuropsychiatric Classification via Connectivity and Machine Learning
1R03MH105765 的行政补充:通过连接和机器学习进行神经精神分类
  • 批准号:
    9076865
  • 财政年份:
    2014
  • 资助金额:
    $ 35.48万
  • 项目类别:
Neuropsychiatric Classification via Connectivity and Machine Learning
通过连接和机器学习进行神经精神分类
  • 批准号:
    8808026
  • 财政年份:
    2014
  • 资助金额:
    $ 35.48万
  • 项目类别:

相似国自然基金

Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目

相似海外基金

NSF PRFB FY 2023: Assessing morphological, behavioral, and genetic impacts of methylmercury on spiders.
NSF PRFB 2023 财年:评估甲基汞对蜘蛛的形态、行为和遗传影响。
  • 批准号:
    2305949
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Fellowship Award
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Continuing Grant
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
  • 批准号:
    24K20168
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Continuing Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
  • 批准号:
    23K28389
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Continuing Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341512
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341513
  • 财政年份:
    2024
  • 资助金额:
    $ 35.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了