Modeling and Simulation to Support Antibiotic Stewardship and Epidemiological Decision-Making in Healthcare Settings

支持医疗机构中抗生素管理和流行病学决策的建模和仿真

基本信息

  • 批准号:
    9420334
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Our proposal assembles an exceptional group of researchers to join the Modeling Infectious Diseases in Healthcare (MIND) network. The University of Utah is the hub for our program, with major nodes at Harvard School of Public Health and Oxford University. Our proposal includes two projects: the first uses models and data to examine antibiotic selection for resistant organisms that cause HAI, including C. difficile, and the second creates modeling tools that use local data to improve implementation of infection control interventions. Thematic areas covered by our proposal include antibiotic resistance, connectedness of patients, surveillance, economic modeling, genomics, and simulations of epidemiologic studies. Our projects are highly interconnected with respect to data and methods, leveraging the broad expertise of our research teams and the availability of comprehensive data resources to support the use of models in healthcare epidemiology. The first project is intended to advance scientific understanding of the drivers of antibiotic resistance and to enhance the practical use of models to guide antibiotic stewardship policies. We will test hypotheses about which mechanisms of selection are most influential for a given organism class and type of resistance. We will categorize antibiotic treatments and organisms with respect to the magnitude of bystander selection, due to exposure of commensal organisms to antibiotics. The impact of antibiotic selection exerted by different classes of broad-spectrum antibiotics will be compared. The outputs of these analyses will support parameterization of forward simulation models, which we will use to evaluate the effects of reducing antibiotic use, particularly through decreasing treatment duration. Outcomes will be examined across drug class and organism. The second project will generate shareable tools that can be applied to local data to help healthcare epidemiologists and public health personnel make decisions regarding the implementation of infection control interventions. Our work for Aim 1 will give epidemiologists a statistical package to fit transmission models to their own carriage and infection data to estimate relevant transmission rate parameters. This will enable determination of the effectiveness of contact precautions and other infection control measures in their own institution. An extension will be to add genomic data to improve the accuracy of estimation of transmission trees. In Aim 2, we will use a “potentially prevented cases metric” to evaluate algorithms to support surveillance of pathogens that cause healthcare-associated infection. The product of this work will be a statistical package to assist epidemiologists in the decision about when it may be warranted to intervene on a possible outbreak either by launching an investigation to detect possible sources or by instituting additional control measures. In Aim 3, we will incorporate into regional models of antibiotic-resistant organisms the capacity to tailor the evaluation of alternative interventions to local patient flow and health economic data. The output will be a simulation and economic modeling tool to guide implementation of coordinated control strategies.
项目概要 我们的提案召集了一群杰出的研究人员加入传染病建模 医疗保健(MIND)网络。犹他大学是我们项目的中心,主要节点在哈佛大学 公共卫生学院和牛津大学。我们的提案包括两个项目:第一个使用模型, 用于检查导致 HAI 的耐药微生物(包括艰难梭菌)的抗生素选择的数据,以及 第二个创建使用本地数据的建模工具来改进感染控制干预措施的实施。 我们的提案涵盖的主题领域包括抗生素耐药性、患者的联系、监测、 经济模型、基因组学和流行病学研究模拟。我们的项目非常 利用我们研究团队的广泛专业知识,在数据和方法方面相互关联 提供全面的数据资源来支持医疗流行病学模型的使用。这 第一个项目旨在促进对抗生素耐药性驱动因素的科学理解,并 加强模型的实际运用来指导抗生素管理政策。我们将测试有关的假设 哪种选择机制对给定的生物体类别和抗性类型影响最大。我们将 根据旁观者选择的程度对抗生素治疗和生物体进行分类,因为 共生生物暴露于抗生素。不同类别抗生素选择的影响 将比较广谱抗生素。这些分析的输出将支持参数化 正向模拟模型,我们将用它来评估减少抗生素使用的效果,特别是 通过减少治疗持续时间。结果将根据药物类别和生物体进行检查。这 第二个项目将生成可共享的工具,可应用于本地数据以帮助医疗保健 流行病学家和公共卫生人员就实施感染控制做出决定 干预措施。我们的目标 1 工作将为流行病学家提供一个统计包,以适应传播模型 他们自己的携带和感染数据来估计相关的传播率参数。这将使 自行确定接触预防措施和其他感染控制措施的有效性 机构。扩展将添加基因组数据以提高传播估计的准确性 树。在目标 2 中,我们将使用“可能预防的病例指标”来评估支持监控的算法 引起医疗保健相关感染的病原体。这项工作的产品将是一个统计包 协助流行病学家决定何时有必要对可能的疫情进行干预 要么开展调查以查明可能的来源,要么采取额外的控制措施。在 目标 3,我们将把定制抗生素耐药性生物体的能力纳入区域模型中。 评估当地患者流量和卫生经济数据的替代干预措施。输出将是 仿真和经济建模工具指导协调控制策略的实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW H SAMORE其他文献

MATTHEW H SAMORE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW H SAMORE', 18)}}的其他基金

Modeling and Simulation to Support Epidemiological Decision-Making in Healthcare Settings
支持医疗机构中流行病学决策的建模和仿真
  • 批准号:
    10800785
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
Modeling and Simulation to Support Epidemiological Decision-Making in Healthcare Settings
支持医疗机构中流行病学决策的建模和仿真
  • 批准号:
    10462461
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
Modeling and Simulation to Support Epidemiological Decision-Making in Healthcare Settings
支持医疗机构中流行病学决策的建模和仿真
  • 批准号:
    10220770
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
Curriculum in Biomedical Big Data: Skill Development and Hands-On Training
生物医学大数据课程:技能发展和实践培训
  • 批准号:
    9146562
  • 财政年份:
    2016
  • 资助金额:
    $ 65万
  • 项目类别:
Curriculum in Biomedical Big Data: Skill Development and Hands-On Training
生物医学大数据课程:技能发展和实践培训
  • 批准号:
    9355635
  • 财政年份:
    2016
  • 资助金额:
    $ 65万
  • 项目类别:
Strategies to Prevent Infection and Reduce Inter-individual Transmission (SPIRIT)
预防感染和减少人际传播的策略 (SPIRIT)
  • 批准号:
    9076955
  • 财政年份:
    2015
  • 资助金额:
    $ 65万
  • 项目类别:
Veterans Like Mine_Cognitive Support for Therapeutic Decision Making
像我这样的退伍军人_治疗决策的认知支持
  • 批准号:
    8496297
  • 财政年份:
    2014
  • 资助金额:
    $ 65万
  • 项目类别:
Informatics, Decision-Enhancement and Analytic Sciences Center
信息学、决策增强和分析科学中心
  • 批准号:
    8581800
  • 财政年份:
    2013
  • 资助金额:
    $ 65万
  • 项目类别:
Informatics, Decision-Enhancement and Analytic Sciences Center
信息学、决策增强和分析科学中心
  • 批准号:
    9076152
  • 财政年份:
    2013
  • 资助金额:
    $ 65万
  • 项目类别:
Contact among Utah School-aged Populations (CUSP)
犹他州学龄人口之间的接触 (CUSP)
  • 批准号:
    8238950
  • 财政年份:
    2011
  • 资助金额:
    $ 65万
  • 项目类别:

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Travel: Support for U.S. Students to Receive Training on Research Cyberinfrastructure at the 2024 Annual Modeling and Simulation Conference (ANNSIM)
旅行:支持美国学生在 2024 年年度建模与仿真会议 (ANNSIM) 上接受研究网络基础设施培训
  • 批准号:
    2425778
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Early-career Participant Support for Additive Manufacturing Modeling, Simulation, and Machine Learning Symposium at MS&T 2023; Columbus, Ohio; October 1- 4, 2023
MS 增材制造建模、仿真和机器学习研讨会的早期职业参与者支持
  • 批准号:
    2334074
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Travel: Support for U.S. Students to Receive Training on Research Cyberinfrastructure at the 2023 Annual Modeling and Simulation Conference (ANNSIM)
旅行:支持美国学生在 2023 年年度建模与仿真会议 (ANNSIM) 上接受研究网络基础设施培训
  • 批准号:
    2306961
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Participant Support for the Eighth Triennial Conference on Foundations of Molecular Modeling and Simulation (FOMMS 2022)
第八届分子建模与模拟基础三年一度会议 (FOMMS 2022) 的参与者支持
  • 批准号:
    2224189
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Participant Support for Symposium of Additive Manufacturing Modeling, Simulation, and Machine Learning (MS&T22); Pittsburgh, Pennsylvania; 9-13 October 2022
增材制造建模、仿真和机器学习研讨会 (MS
  • 批准号:
    2229993
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Simulation Modeling to Support the Public Health Response to the Opioid Crisis in North America
模拟建模支持北美阿片类药物危机的公共卫生应对
  • 批准号:
    10617813
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
A Simulation Modeling Study to Support Personalized Breast Cancer Prevention and Early Detection in High-Risk Women
支持高危女性个性化乳腺癌预防和早期检测的模拟模型研究
  • 批准号:
    10201836
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
Simulation Modeling to Support the Public Health Response to the Opioid Crisis in North America
模拟建模支持北美阿片类药物危机的公共卫生应对
  • 批准号:
    10409779
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
A Simulation Modeling Study to Support Personalized Breast Cancer Prevention and Early Detection in High-Risk Women
支持高危女性个性化乳腺癌预防和早期检测的模拟模型研究
  • 批准号:
    10371141
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
Simulation Modeling to Support the Public Health Response to the Opioid Crisis in North America
模拟建模支持北美阿片类药物危机的公共卫生应对
  • 批准号:
    10237670
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了