Integration of multiscale genomic data for comprehensive analysis of complex dise

整合多尺度基因组数据以全面分析复杂疾病

基本信息

  • 批准号:
    9334256
  • 负责人:
  • 金额:
    $ 32.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-17 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Complex diseases are caused by a variety of genomics, transcriptomics, epigenomics, and proteomics factors and many studies have suggested that these different factors do not act in isolation, but rather interact/crosstalk at multiple levels and depend on one another in an intertwined manner. A variety of genomics techniques such as SNPs, microarray gene expressions, and the emerging next generation sequencing (NGS), have generated vast amount of multiscale genomic data, providing multi-dimensional and complementary information. However, currently these multiscale genomics data have not been well integrated and associated with clinical data for comprehensive analysis of a disease. The difficulty lies in the complexity and heterogeneity of these multi-omics data. In addition, the specific properties of these data (e.g., their correlations across multiple levels, small sample size but large number of biomarkers, group structures) have not been well considered, which necessitate a paradigm shift in the technical approaches. The goal of this project is therefore to tackle these significant bioinformatics challenges by developing innovative integration approaches such as sparse models by considering the specific features of multiscale genomic data. Furthermore, we will apply them to the diagnosis (e.g., identification of genes) and prediction of risks to complex diseases (e.g., osteoporosis). Our multi-/inter-disciplinary research team consisting of statisticians, geneticists, molecular biologists, bioinformaticians and biomedical engineers with complementary expertise has worked synergistically in the past few years and contributed significantly to the development of data integration approaches. Building on this work, we plan to accomplish the following specific aims: 1) To extract genetic signatures (e.g., CNVs) from multiple NGS samples and incorporate them into multi-omics studies; 2) To study the cross-talks/correlations between multi-omics data, from which epistatic networks can be detected; 3) To develop data integration techniques that can combine multiple genomic factors for the identification of risk genes and regions; and 4) To construct a sparse regression model to predict quantitative traits with increased power from multiple sources of genomic information including pathways and interaction networks. We will validate our model with the study of osteoporosis at Tulane Center for Bioinformatics and Genomics. With over 20,000 patients collected, to our knowledge, we have the largest and most comprehensive datasets, which will serve as a unique platform for validating our approaches. We anticipate that the project will have a large and sustained impact. The successful implementation of the project will enable us to 1) better elucidate specific genetic risk mechanisms for osteoporosis; 2) search for potential drug targets; and 3) ultimately obtain novel approaches for better prevention and treatment of osteoporosis. Upon the completion of the project, we will provide a set of efficient and powerful analytical tools for integrative data analysis, and make them freely available through our ongoing software development of GCATs (Genomic Convergence Analysis Tools) for multiscale genomic data management and analysis.
描述(申请人提供):复杂的疾病是由各种基因组学、转录组学、表观基因组学和蛋白质组学因素引起的,许多研究表明,这些不同的因素并不是单独作用的,而是在多个水平上相互作用/串扰,以相互交织的方式相互依赖。各种基因组学技术,如SNPs、微阵列基因表达和新兴的下一代测序(NGS),已经产生了海量的多尺度基因组数据,提供了多维和互补的信息。然而,目前这些多尺度基因组学数据还没有很好地整合在一起,并与临床数据相关联,以便对疾病进行全面分析。困难在于这些多组学数据的复杂性和异质性。在……里面 此外,这些数据的具体性质(例如,它们在多个水平上的相关性、小样本量但大量的生物标志物、组结构)没有得到很好的考虑,这就需要在技术方法上进行范式转变。因此,该项目的目标是通过开发创新的技术来应对这些重大的生物信息学挑战 通过考虑多尺度基因组数据的特定特征的稀疏模型等整合方法。此外,我们将把它们应用于诊断(例如,识别基因)和预测复杂疾病(例如,骨质疏松症)的风险。我们的多学科/跨学科研究团队由统计学家、遗传学家、分子生物学家、生物信息学家和 具有互补专业知识的生物医学工程师在过去几年中协同工作,为数据集成方法的发展做出了重大贡献。在这项工作的基础上,我们计划实现以下具体目标:1)从多个NGS样本中提取遗传特征(例如CNV),并将它们纳入多组学研究;2)研究多组学数据之间的相互作用/相关性,从中可以检测到上位性网络;3)开发能够结合多个基因组因素来识别风险基因和区域的数据集成技术;以及4)构建稀疏回归模型,以预测从包括路径和相互作用网络在内的多个基因组信息来源中获得的更强大的数量性状。我们将通过杜兰生物信息学和基因组学中心对骨质疏松症的研究来验证我们的模型。据我们所知,我们收集了20,000多名患者,我们拥有最大和最全面的数据集,这将成为验证我们的方法的独特平台。我们预计该项目将产生巨大和持续的影响。该项目的成功实施将使我们能够1)更好地阐明骨质疏松的特定遗传风险机制;2)寻找潜在的药物靶点;3)最终获得更好地预防和治疗骨质疏松症的新方法。项目完成后,我们将为综合数据分析提供一套高效而强大的分析工具,并通过我们正在进行的用于多尺度基因组数据管理和分析的GCATS(基因组聚合分析工具)软件的开发免费提供这些工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YU-PING WANG其他文献

YU-PING WANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YU-PING WANG', 18)}}的其他基金

Integration of brain imaging and multi-omics data for improved diagnosis and prediction of mental disorders
整合脑成像和多组学数据以改进精神障碍的诊断和预测
  • 批准号:
    10415228
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Integration of brain imaging and multi-omics data for improved diagnosis and prediction of mental disorders
整合脑成像和多组学数据以改进精神障碍的诊断和预测
  • 批准号:
    10398354
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Core C: Biostatistics and Bioinformatics Core
核心 C:生物统计学和生物信息学核心
  • 批准号:
    10180817
  • 财政年份:
    2017
  • 资助金额:
    $ 32.58万
  • 项目类别:
Integration of fMRI imaging, genomics, network and biological knowledge
整合功能磁共振成像、基因组学、网络和生物知识
  • 批准号:
    8985308
  • 财政年份:
    2015
  • 资助金额:
    $ 32.58万
  • 项目类别:
Integration of fMRI imaging, genomics, network and biological knowledge
整合功能磁共振成像、基因组学、网络和生物知识
  • 批准号:
    9147000
  • 财政年份:
    2015
  • 资助金额:
    $ 32.58万
  • 项目类别:
A New Paradigm for Integrated Analysis of Multiscale Genomic Imaging Datasets
多尺度基因组成像数据集集成分析的新范式
  • 批准号:
    7845601
  • 财政年份:
    2009
  • 资助金额:
    $ 32.58万
  • 项目类别:
A New Paradigm for Integrated Analysis of Multiscale Genomic Imaging Datasets
多尺度基因组成像数据集集成分析的新范式
  • 批准号:
    7641582
  • 财政年份:
    2009
  • 资助金额:
    $ 32.58万
  • 项目类别:
Core C: Biostatistics and Bioinformatics Core
核心 C:生物统计学和生物信息学核心
  • 批准号:
    9280199
  • 财政年份:
  • 资助金额:
    $ 32.58万
  • 项目类别:
Core C: Biostatistics and Bioinformatics Core
核心 C:生物统计学和生物信息学核心
  • 批准号:
    9916692
  • 财政年份:
  • 资助金额:
    $ 32.58万
  • 项目类别:

相似海外基金

Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
  • 批准号:
    2421267
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
  • 批准号:
    2409876
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
  • 批准号:
    EP/Z532678/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Research Grant
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
  • 批准号:
    BB/X018571/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Research Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
  • 批准号:
    2321666
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Cooperative Agreement
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
  • 批准号:
    BB/X018768/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
  • 批准号:
    MC_UU_00034/5
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Intramural
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
  • 批准号:
    2334642
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Bioinformatics Core
生物信息学核心
  • 批准号:
    10404414
  • 财政年份:
    2023
  • 资助金额:
    $ 32.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了