Envelope Biogenesis in Gram-negative Bacteria
革兰氏阴性细菌的包膜生物发生
基本信息
- 批准号:9302818
- 负责人:
- 金额:$ 32.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-05 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAlpha CellAnabolismAnimal ModelAntibiotic ResistanceAntibioticsBacteriaBindingBiochemicalBiogenesisCationsCause of DeathCell Membrane PermeabilityCell ShapeCell SurvivalCell WallCell physiologyCell surfaceCellsComplexCouplesCrude ExtractsCytolysisCytoplasmDefectDevelopmentDisaccharidesEnvironmentEscherichia coliFundingGeneticGlycolipidsGoalsGram-Negative BacteriaGrowthHydrolysisHydrophobicityImmune systemKnowledgeLinkLipid BilayersLipidsLipopolysaccharidesMediatingMembraneMembrane ProteinsMolecularMolecular ConformationOrganismPathogenesisPathway interactionsPeptidoglycanPermeabilityPolymersProteinsResistanceSideSiteStructureSystemTestingTransmembrane TransportTravelWorkantimicrobialaqueouscell envelopedesignenvironmental changeextracellularglobal healthin vivokillingsmicroorganismmuramyl-NAc-(pentapeptide)pyrophosphoryl-undecaprenolnovelpathogenperiplasmprotein protein interactionpublic health relevancescaffoldsmall molecule
项目摘要
DESCRIPTION (provided by applicant): The envelope of Gram-negative bacteria is delimited by two lipid bilayers, the inner and outer membranes (IM and OM, respectively). The external leaflet of the OM contains densely packed lipopolysaccharides (LPS) that confer unusually high impermeability towards small hydrophobic molecules. As a result, Gram-negative bacteria are naturally resistant to many antibiotics. The IM and OM are separated by the aqueous compartment known as the periplasm where a cell wall composed of peptidoglycan resides. The peptidoglycan cell wall is an essential polymeric rigid structure that protects cells from osmotic lysis. Given the structural and protective functions of the cell envelope, proper envelope biogenesis is crucial for the survival of bacteria in many environments. Underscoring this is the fact that many antibiotics target envelope biogenesis pathways. Our long-term goal is to understand at the molecular level how Gram-negative bacteria build their cell envelope. Here, we propose to primarily use a combination of genetic and biochemical approaches to investigate two highly conserved systems that transport glycolipids across the cell envelope from their site of synthesis to the cellular compartment where they function: 1) MurJ, a polytopic IM protein that facilitates the most poorly understood step in peptidoglycan biosynthesis, the translocation of the lipid-linked peptidoglycan precursor lipid II across the IM; and 2) Lpt (LPS transport), a mult-protein bridge that spans the envelope and that functions to transport LPS from the IM to the cell surface. Both of these systems are essential for the viability of many bacteria including our model organism Escherichia coli. In aim 1, we propose studies to understand the mechanism that MurJ uses to flip lipid II by: a) conducting structure-function studies on MurJ; b) determinin how MurJ interacts with lipid II; c) probing conformational changes that MurJ undergoes during the transport cycle; and, d) studying how MurJ is powered. In aim 2, we will investigate the most poorly understood step in LPS transport by focusing our studies on the LptFGB2C sub-complex, a unique ATP- binding cassette transporter that powers the extraction of LPS from the IM and its transport along the Lpt bridge to the cell surface. Specifically, in aim 2, we will: a) determie the topology of the membrane components LptF and LptG with respect to the IM; b) define protein-protein interactions in the LptFGB2C sub- complex; and c) elucidate how LptFGB2C couples ATP binding and hydrolysis in the cytoplasm to the extraction of LPS from the outer leaflet of the IM. Because inhibition of MurJ function leads to cell lysis and defects in the Lpt system can either increase OM permeability to many antibiotics or even cause death, knowledge gained from the proposed work will help in developing novel antimicrobial therapies. Studies on Lpt are especially needed to understand how we can overcome the innate resistance to antibiotics that Gram- negative have because of the barrier imposed by the presence of LPS at the cell surface.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natividad Ruiz其他文献
Natividad Ruiz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natividad Ruiz', 18)}}的其他基金
Biogenesis of Peptidoglycan in Escherichia coli
大肠杆菌中肽聚糖的生物发生
- 批准号:
8505507 - 财政年份:2012
- 资助金额:
$ 32.29万 - 项目类别:
Envelope Biogenesis in Gram-negative Bacteria
革兰氏阴性细菌的包膜生物发生
- 批准号:
10065723 - 财政年份:2012
- 资助金额:
$ 32.29万 - 项目类别:
Biogenesis of Peptidoglycan in Escherichia coli
大肠杆菌中肽聚糖的生物发生
- 批准号:
8908021 - 财政年份:2012
- 资助金额:
$ 32.29万 - 项目类别:
Envelope Biogenesis in Gram-negative Bacteria
革兰氏阴性细菌的包膜生物发生
- 批准号:
10251349 - 财政年份:2012
- 资助金额:
$ 32.29万 - 项目类别:
Envelope Biogenesis in Gram-negative Bacteria
革兰氏阴性细菌的包膜生物发生
- 批准号:
10683987 - 财政年份:2012
- 资助金额:
$ 32.29万 - 项目类别:
Envelope Biogenesis in Gram-negative Bacteria
革兰氏阴性细菌的包膜生物发生
- 批准号:
10462796 - 财政年份:2012
- 资助金额:
$ 32.29万 - 项目类别:
Biogenesis of Peptidoglycan in Escherichia coli
大肠杆菌中肽聚糖的生物发生
- 批准号:
8393936 - 财政年份:2012
- 资助金额:
$ 32.29万 - 项目类别:
相似海外基金
The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
- 批准号:
10678248 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 32.29万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 32.29万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 32.29万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
- 批准号:
10376866 - 财政年份:2020
- 资助金额:
$ 32.29万 - 项目类别:














{{item.name}}会员




