Engineering Reversible Cell-Cell Interactions with Chemically Self-Assembled CARs
利用化学自组装 CAR 设计可逆的细胞间相互作用
基本信息
- 批准号:9751255
- 负责人:
- 金额:$ 2.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-04 至 2020-05-05
- 项目状态:已结题
- 来源:
- 关键词:Adenocarcinoma CellAntibioticsAntibodiesB lymphoid malignancyBackBiological MarkersBreast AdenocarcinomaBreast Cancer CellCD3 AntigensCancer PatientCarcinomaCell CommunicationCell MaintenanceCell TherapyCell membraneCell surfaceCellsCellular immunotherapyChemical StructureChemicalsChemistryChimeric ProteinsClinicalConsumptionDataDevelopmentDihydrofolate ReductaseElementsEngineeringEscherichia coliEvaluationFDA approvedFatty AcidsFibronectinsFosteringFutureGeneticGenetic EngineeringGoalsHematologic NeoplasmsIn VitroKineticsLengthLibrariesLipidsMCF7 cellMalignant Epithelial CellMalignant NeoplasmsMembraneMentorsMethodsMethotrexateModificationMusOligonucleotidesPathway interactionsPatientsPeptidesPharmaceutical PreparationsPharmacologyPhospholipidsPhysiciansPopulationProteinsReceptor CellRoleSafetyScientistStem cellsStructureSurfaceT-Cell ReceptorT-LymphocyteTACSTD1 geneTechniquesTestingTherapeuticTimeTreatment EfficacyTrimethoprimVariantWorkXenograft ModelYeastsanticancer treatmentarmbasecancer stem cellcancer therapycell typechemical stabilitychimeric antigen receptorclinically relevantdesigndimerfluorophoregenetic approachimprovedin vivoin vivo evaluationneoplastic cellnon-geneticnovelscaffoldside effectsmall molecule librariestissue regenerationtumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Modifying T cells with chimeric antigen receptors (CARs) is a clinically-validated approach for the treatment of
some B-cell malignancies. Though efficacious, the genetic modification of these cells is associated with
significant drawbacks. For instance, the genetic engineering techniques are tedious, inefficient, and not
applicable to all cell types. Furthermore, the modifications are permanent, leading to persistent, severe, and
irreversible patient side effects. Because of these drawbacks, the use of an alternative, reversible scaffold to
direct therapeutic cell-cell interactions would be highly beneficial. It has been previously demonstrated that a
fusion protein comprised of two units of E. coli dihydrofolate reductase (DHFR2) will spontaneously assemble
into a chemically self-assembled nanoring (CSAN) when combined with the chemical dimerizer bis-
methotrexate (bisMTX). Recently, an anti-EpCAM scFv was fused to the DHFR2 protein, and a phospholipid
was conjugated to the bisMTX species. Assembly of these species formed chemically self-assembled chimeric
antigen receptors (CS-CARs) that were embedded in the membrane of T cells and drove selective recognition
and killing of EpCAM-positive carcinoma cells. Importantly, the CS-CARs were readily removed from the T cell
surface via incubation with the FDA-approved antibiotic trimethoprim, affording a pharmacological mechanism
to deactivate the CS-CARs. Despite these positive in vitro results, it remains unclear whether the current
structure of the CS-CAR is optimal for the initiation and maintenance of cell-cell interactions. Therefore, the
aims proposed in this project are designed to further test the hypothesis that CS-CARs can be used as a rapid,
reversible method to modify cell surfaces for therapeutic purposes. Specifically, the results will further the
understanding of the structural components of these CS-CARs, providing a rational pathway to optimize their
therapeutic efficacy. Aim 1 will focus on a systematic evaluation of each component of the CS-CAR,
generating a small library of CS-CAR constructs. This includes variation of lipid species, PEG/peptide linker
lengths, and targeting element identity (scFv vs. novel fibronectin engineered via yeast surface display). The
ability of the CS-CARs to initiate and maintain specific, reversible cell-cell interactions in vitro will be also
established. Aim 2 will evaluate the in vitro efficacy T cells modified with different anti-EpCAM CS-CARs to
selectively recognize and kill EpCAM-positive MCF7 breast adenocarcinoma cells. These results will afford
optimized CS-CARs suitable for further evaluation in vivo and enhance the field's understanding of designing
reversible, therapeutic cell-cell interactions. Therefore, this proposal has broad implications not only for the
cell-based treatment of malignancies, but also for other applications utilizing directed cell-cell interactions.
Moreover, this application provides a rigorous, yet defined scientific and mentoring framework to foster the
applicant's goals of becoming a successful academic physician-scientist.
项目总结/摘要
用嵌合抗原受体(汽车)修饰T细胞是一种临床上验证的用于治疗免疫缺陷综合征的方法。
B细胞恶性肿瘤尽管有效,但这些细胞的遗传修饰与
重大缺陷。例如,基因工程技术是繁琐的,效率低下的,
适用于所有细胞类型。此外,修改是永久性的,导致持续的,严重的,
不可逆的患者副作用。由于这些缺点,使用替代的可逆支架来
直接的治疗性细胞-细胞相互作用将是非常有益的。先前已经证明,
融合蛋白由两个E.大肠杆菌二氢叶酸还原酶(DHFR 2)
当与化学二聚剂双-
甲氨蝶呤(bisMTX)。最近,将抗EpCAM scFv与DHFR 2蛋白融合,并将磷脂
与bisMTX物质缀合。这些物种的组装形成化学自组装嵌合体
抗原受体(CS-CAR),嵌入T细胞膜并驱动选择性识别
和杀死EpCAM阳性癌细胞。重要的是,CS-CAR很容易从T细胞中去除
通过与FDA批准的抗生素甲氧苄啶孵育,
来解除CS-CAR尽管有这些积极的体外结果,但目前仍不清楚目前是否
CS-CAR的结构对于细胞-细胞相互作用的起始和维持是最佳的。因此
该项目中提出的目标旨在进一步检验CS-CAR可用作快速,
可逆的方法来修饰细胞表面用于治疗目的。具体而言,这些结果将进一步促进
了解这些CS-CAR的结构组分,提供合理的途径来优化其
疗效目标1将侧重于系统评价CS-CAR的每个组成部分,
产生CS-CAR构建体的小文库。这包括脂质种类、PEG/肽接头的变化
长度和靶向元件同一性(scFv与通过酵母表面展示工程化的新型纤连蛋白)。的
CS-CAR在体外启动和维持特异性的、可逆的细胞-细胞相互作用的能力也将是
确立了习目的2将评估用不同抗EpCAM CS-CAR修饰的T细胞对免疫应答的体外功效。
选择性识别并杀死EpCAM阳性MCF 7乳腺癌细胞。这些结果将提供
优化的CS-CAR适合于进一步的体内评价,并增强了该领域对设计的理解。
可逆的治疗性细胞间相互作用因此,这项建议不仅对
恶性肿瘤的基于细胞的治疗,但也用于利用定向细胞-细胞相互作用的其它应用。
此外,该应用程序提供了一个严格的,但明确的科学和指导框架,以促进
申请人的目标是成为一个成功的学术物理学家,科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clifford Michael Csizmar其他文献
Clifford Michael Csizmar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clifford Michael Csizmar', 18)}}的其他基金
Engineering Reversible Cell-Cell Interactions with Chemically Self-Assembled CARs
利用化学自组装 CAR 设计可逆的细胞间相互作用
- 批准号:
9314991 - 财政年份:2016
- 资助金额:
$ 2.58万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 2.58万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 2.58万 - 项目类别:
Studentship