An Integrative Approach to Control Group Creation for Prevention Research
预防研究控制组创建的综合方法
基本信息
- 批准号:9754730
- 负责人:
- 金额:$ 48.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdolescentAdoptedAffectAlcohol consumptionAlcoholsAlgorithmsArchivesAreaCharacteristicsChargeCigaretteCodeCommunitiesControl GroupsDataData CollectionData SetDatabasesDevelopmentDrug Prevention ProgramDrug usageEffectivenessEffectiveness of InterventionsElementsEnsureEtiologyFundingFutureGoalsHealthInterventionKnowledgeMarijuanaMeasuresMediatingMethodsModelingOnline SystemsOutcomeParticipantPatternPharmaceutical PreparationsPhasePreventionPrevention ResearchPreventive InterventionProcessProgram EffectivenessProviderRandomizedResearchResearch PersonnelResearch Project GrantsSchemeSchoolsServicesSmall Business Innovation Research GrantSocial ProblemsStatistical ModelsSystemTechnologyTestingTimeWorkadolescent drug usealcohol preventionalcohol researchcase controlcigarette smokingcontrol trialcostcourse developmentdata resourcedemographicsdesignefficacy studyepidemiology studymarijuana useprogramspsychosocialrecruitresearch studysubstance use preventiontooltreatment groupvirtual
项目摘要
PROJECT ABSTRACT
The goal of this Phase II SBIR project is to develop a method for creating algorithmically generated control
groups – virtual controls. These will be composed of synthetic cases that have two characteristics: (1) pretest
similarity to whatever prevention treatment group may present itself and (2) patterns of change over time that
closely mimic the normal course of alcohol and drug use development. The field of alcohol and drug prevention
is one that has significantly matured and has rich data resources that can be employed to this end. Notably,
numerous school and community efficacy studies have employed control groups in randomized control trials.
Additional etiological and epidemiological studies have collected similar data. Given the large amount of data
available for analysis, it is now possible to model the onset of alcohol and drug use among adolescents. We
propose to gather data from previous studies and develop statistical models that can be used to predict the
onset of alcohol and drug use. An algorithm will be developed that will create integrative control cases to match
to a treatment group’s demographics and pretest mediating variable scores and then estimate future drug use.
Several benefits of this method are anticipated. Alcohol and drug prevention researchers and practitioners will
be able to use this approach to test the effectiveness of disseminated interventions and to quickly evaluate the
potential of new and alternative prevention interventions. Specifically, this method will provide a means to
evaluate the effectiveness of alcohol and drug prevention programs that are disseminated when randomization
cannot occur. This method will also make evaluating new and adapted programs easier by reducing the
challenges of recruitment, subject retention, and onsite data collection and pretest non-equivalence that often
occur when l classrooms, schools and communities are assigned to condition. In this project, we will (1) gather
data from previous longitudinal drug and alcohol research projects focused on adolescents; (2) harmonize
these data to match a predefined coding scheme and include them in an integrated referential database;
(3) refine and validate statistical models developed during Phase I to ensure algorithms used to generate
virtual control cases are valid and replicable; (4) prepare a web-based system that will allow virtual control
group technology to be maximally automated; and (5) conduct de novo field trials of disseminated interventions
to demonstrate the viability of the system for providing meaningful comparisons.
项目摘要
该阶段II SBIR项目的目标是开发一种创建算法生成控制的方法
组 - 虚拟控件。这些将由具有两个特征的合成案例组成:(1)预测试
与任何预防治疗组可能出现的相似性,以及(2)随着时间的推移的变化模式
密切模仿酒精和药物使用的正常过程。酒精和药物预防领域
是已经大量成熟并拥有丰富的数据资源的人可以执行的。尤其,
许多学校和社区效率研究都在随机对照试验中雇用了对照组。
其他病因和流行病学研究收集了相似的数据。给定大量数据
可用于分析,现在可以对青少年的酒精和药物使用进行建模。我们
提议从以前的研究中收集数据并开发可用于预测的统计模型
酒精和吸毒的发作。将开发一种算法,将创建集成控制案例以匹配
进行治疗组的人口统计学和预测的介导可变分数,然后估计未来的药物使用。
预计该方法的几个好处。酒精和药物预防研究人员和从业者将
能够使用这种方法来测试传播干预措施的有效性,并快速评估
新的预防干预措施的潜力。具体来说,这种方法将提供一种手段
评估随机化时散布的酒精和药物预防计划的有效性
无法发生。此方法还将通过降低来评估新的和改编的程序。
招聘,主题保留和现场数据收集和预测试的挑战通常
当L教室,学校和社区被分配到条件时发生。在这个项目中,我们将(1)聚集
以前的纵向药物和酒精研究项目的数据集中在青少年上; (2)和谐
这些数据以匹配预定义的编码方案,并将其包含在集成的参考数据库中;
(3)在第一阶段开发的完善和验证统计模型,以确保用于生成的算法
虚拟控制案例是有效且可复制的; (4)准备基于网络的系统,该系统将允许虚拟控制
团体技术将被最高自动化; (5)进行传播干预措施的从头野外试验
证明系统提供有意义的比较的可行性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Algorithm for Creating Virtual Controls Using Integrated and Harmonized Longitudinal Data.
- DOI:10.1177/0163278718772882
- 发表时间:2018-06
- 期刊:
- 影响因子:2.9
- 作者:Hansen WB;Chen SH;Saldana S;Ip EH
- 通讯作者:Ip EH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William B. Hansen其他文献
Behavioral predictors of abstinence: early indicators of a dependence on tobacco among adolescents.
戒烟行为预测因素:青少年对烟草依赖的早期指标。
- DOI:
- 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
William B. Hansen - 通讯作者:
William B. Hansen
Prevention of alcohol use and abuse.
预防饮酒和滥用酒精。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:5.1
- 作者:
William B. Hansen - 通讯作者:
William B. Hansen
Ciencia, política y práctica: lecciones desde Estados Unidos de América
科学、政治和实践:美洲大学的学习
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
William B. Hansen;Linda Dusenbury - 通讯作者:
Linda Dusenbury
William B. Hansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William B. Hansen', 18)}}的其他基金
Prototype for an online skills-based drug prevention program targeting youth 11-13
针对 11-13 岁青少年的基于技能的在线毒品预防计划原型
- 批准号:
10382037 - 财政年份:2021
- 资助金额:
$ 48.66万 - 项目类别:
An Integrative Approach to Control Group Creation for Prevention Research
预防研究控制组创建的综合方法
- 批准号:
9045107 - 财政年份:2016
- 资助金额:
$ 48.66万 - 项目类别:
Feasibility of a Social Network Preventive Intervention
社交网络预防干预的可行性
- 批准号:
8436203 - 财政年份:2012
- 资助金额:
$ 48.66万 - 项目类别:
Feasibility of a Social Network Preventive Intervention
社交网络预防干预的可行性
- 批准号:
8229886 - 财政年份:2012
- 资助金额:
$ 48.66万 - 项目类别:
The Impact of Adaptation on Successful Implementation
适应对成功实施的影响
- 批准号:
7894850 - 财政年份:2009
- 资助金额:
$ 48.66万 - 项目类别:
The Impact of Adaptation on Successful Implementation
适应对成功实施的影响
- 批准号:
7433474 - 财政年份:2009
- 资助金额:
$ 48.66万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Risk and protective factors for Black youth suicide and suicidal ideation and behaviors
黑人青少年自杀以及自杀意念和行为的风险和保护因素
- 批准号:
10664624 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别:
Investigating interference-control in ADHD using a novel forced-response method
使用新颖的强制响应方法研究 ADHD 的干扰控制
- 批准号:
10591920 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别:
The Impact of School Meal Delivery on Behavioral Disorders among Children in Health Disparity Populations
学校供餐对健康差异人群中儿童行为障碍的影响
- 批准号:
10728640 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别:
Suicide Prevention with Substance Using Youth Experiencing Homelessness
通过使用无家可归青少年的药物来预防自杀
- 批准号:
10712445 - 财政年份:2023
- 资助金额:
$ 48.66万 - 项目类别: