iTransform: Wearable Biosensors to Detect the Evolution of Opioid Tolerance in Opioid Naïve Individuals
iTransform:可穿戴生物传感器检测阿片类药物耐受性的演变
基本信息
- 批准号:9889092
- 负责人:
- 金额:$ 18.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAgeAlgorithmsAnalgesicsAreaBehavior TherapyBehavioralBig DataBiological MarkersBiometryBiosensing TechniquesBiosensorCharacteristicsConsentDataData AnalysesData AnalyticsData CollectionData ScienceData SetDevelopmentDevicesDoctor of PhilosophyDoseDrug abuseEnsureEvaluationEventEvolutionFractureFundingGalvanic Skin ResponseGenderGeneticGoalsHeroin AbuseImmersionIndividualIngestionInterventionInvestigationItalyK-Series Research Career ProgramsKnowledgeMachine LearningMeasurementMeasuresMedicalMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMethodsMonitorMorbidity - disease rateMotionOpiate AddictionOpioidOpioid AnalgesicsOverdosePainParticipantPatientsPatternPattern RecognitionPharmaceutical PreparationsPhysiologicalPhysiologyPilot ProjectsPopulationPredictive AnalyticsProductivityProtocols documentationPublic HealthRecordsRelapseReportingResearchResearch PersonnelResearch Project GrantsResearch TrainingRiskRisk FactorsSafetyScienceScientistSignal TransductionSkin TemperatureSourceSubstance Use DisorderSubstance abuse problemTeacher Professional DevelopmentTechniquesTechnologyTestingTherapeuticTherapeutic EffectTherapeutic UsesTimeTrainingUnited States National Institutes of HealthWorkWristaddictionanalytical methodbasebehavioral healthcareercomparativedata integritydata managementdigitalexperiencehigh riskinnovationinsightlearning algorithmmHealthmachine learning algorithmmachine learning methodmortalitynovelopiate toleranceopioid abuseopioid mortalityopioid overdoseopioid therapyopioid useprediction algorithmprescription opioidpreventprogramsrecruitresponsesensorsignal processingskillssocialsuccesssupervised learningtool
项目摘要
PROJECT SUMMARY
The integrated research and training plans outlined in this K23 submission will prepare me for a career as a
clinician-scientist conducting translational substance abuse research. My career goal is to perform hypothesis-
driven original research investigations directed toward reducing morbidity and mortality from opioid overdose. In
this proposal, I intend to deploy wearable biosensors (small devices that continuously record physiology) to study
the effects of therapeutic administration of opioid analgesics. I have already studied wearable biosensors in
individuals receiving opioids; my preliminary data demonstrates that opioid-tolerant individuals have different
biometric signals than non-tolerant individuals. This observation suggests that biosensors can be used to identify
the onset of tolerance, an important event that correlates with higher doses of opioid analgesics, and higher risk
of death from opioid overdose. Biosensor data management and analysis requires signal processing, data
analytic, and machine learning techniques; these approaches are beyond the areas of traditional medical
training. My short-term goal is to utilize this K23 award to fill my knowledge gaps in wearable biosensing and
advanced data analysis so that I can generate ever more innovative responses to the problem of opioid
prescribing, tolerance, misuse, addiction, and overdose. To optimize this important line of investigation, I have
developed a training plan that includes: 1) completing a PhD through the Millennium PhD program; 2) expanding
my skills in wearable biosensing and behavioral health-based research; 3) developing an understanding of signal
processing and machine learning; 4) developing data analytic and data science skills; and 5) expanding my
research presentation and dissemination skills. I will achieve these goals through directed coursework, focused
seminars, and practical experience. My mentorship team of expert investigators who will ensure my productivity
and success includes E. Boyer (primary mentor), D. Smelson, J. Fang, and P. Indic (secondary mentors), and
D. Ganesan (advisor) My research plan has three specific aims: 1) to deploy a wearable biosensor technology
to detect digital biomarkers associated with the initiation of opioid analgesic therapy in an opioid naïve population;
2) to use signal-processing analytics to identify transitions in digital biomarkers with progressive opioid use and
to identify individual characteristics associated with this transition; and, 3) to apply and explore supervised
learning algorithms that can predict transitions in digital biomarkers that herald the onset of opioid tolerance. To
identify dynamic patterns in response to opioids, I will study the digital biomarkers of opioid-naïve patients with
acute fractures who are prescribed opioid analgesics. Results will be used to develop “big data” approaches to
apply predictive algorithms to identify the onset of opioid tolerance. This work has the potential to prevent
development of problematic opioid use and will provide the basis for subsequent R01 submissions to implement
sensor-based interventions triggered by the onset of tolerance in individuals receiving opioid analgesics.
项目摘要
本k23提交中概述的综合研究和培训计划将使我为自己的职业做好准备
临床科学家进行转化药物滥用研究。我的职业目标是进行假设 -
驱动的原始研究调查是针对降低阿片类药物过量的发病率和死亡率的。在
该建议,我打算部署可穿戴的生物传感器(不断记录生理学的小型设备)来研究
阿片类镇痛药治疗施用的影响。我已经研究了可穿戴的生物传感器
接受阿片类药物的个人;我的初步数据表明,阿片类药物耐受性的人有不同的
比非耐受个体的生物识别信号。该观察结果表明生物传感器可用于识别
耐受性的发作,这是一个与较高剂量的阿片类镇痛药相关的重要事件,风险更高
阿片类药物过量的死亡。生物传感器数据管理和分析需要信号处理,数据
分析和机器学习技术;这些方法超出了传统医学领域
训练。我的短期目标是利用该K23奖,以填补我在可穿戴生物传感和
高级数据分析,以便我可以对阿片类药物问题产生更具创新的回应
处方,宽容,滥用,成瘾和过量。为了优化这一重要的调查,我有
制定了一个培训计划,其中包括:1)通过千年博士学位完成博士学位; 2)扩展
我在可穿戴生物传感和基于行为健康的研究方面的技能; 3)对信号的理解
处理和机器学习; 4)开发数据分析和数据科学技能; 5)扩大我的
研究演示和传播技巧。我将通过有定向课程实现这些目标,集中于
半手和实践经验。我的专家调查员团队将确保我的生产力
成功包括E. Boyer(主要导师),D。Smelson,J。Fang和P. AIND(次要导师)和
D. Ganesan(顾问)我的研究计划具有三个具体目标:1)部署可穿戴生物传感器技术
检测与Ooid幼体中Ooid镇痛治疗的倡议相关的数字生物标志物;
2)使用信号处理分析来识别具有渐进式阿片类药物使用和的数字生物标志物中的过渡
确定与此过渡相关的个人特征; 3)申请和探索监督
学习可以预测数字生物标志物中的过渡的学习算法,这些算法预示了阿片类药物耐受性的发作。到
确定对阿片类药物的动态模式,我将研究未经阿片类药物患者的数字生物标志物
处方阿片类镇痛药的急性骨折。结果将用于开发“大数据”方法
应用预测算法来识别阿片类药物耐受性的发作。这项工作有可能预防
开发有问题的阿片类药物使用,并将为随后的R01提交提供基础
基于传感器的干预措施是由接受阿片类镇痛药的个体的公差发作引发的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANIE P CARREIRO其他文献
STEPHANIE P CARREIRO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANIE P CARREIRO', 18)}}的其他基金
RAE cHealth: A digital community support tool to promote recovery from substance use disorder
RAE cHealth:促进药物滥用障碍康复的数字社区支持工具
- 批准号:
10838804 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
The ANTIDOTE Institute- Advancing New Toxicology Investigators in Drug abuse and Original Translational research Efforts
ANTIDOTE Institute - 推动新毒理学研究人员在药物滥用和原创转化研究工作中的发展
- 批准号:
10681927 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
MINDER: Wearable sensor-based detection of digital biomarkers of adherence to medications for opioid use disorder
MINDER:基于可穿戴传感器的数字生物标记检测,用于检测阿片类药物使用障碍药物的依从性
- 批准号:
10656796 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
RAE cHealth: A digital community support tool to promote recovery from substance use disorder
RAE cHealth:促进药物滥用障碍康复的数字社区支持工具
- 批准号:
10469897 - 财政年份:2022
- 资助金额:
$ 18.86万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
10356481 - 财政年份:2019
- 资助金额:
$ 18.86万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
10370419 - 财政年份:2019
- 资助金额:
$ 18.86万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
9545385 - 财政年份:2019
- 资助金额:
$ 18.86万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
- 批准号:
10724756 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
- 批准号:
10731651 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Integrating the Youth Nominated Support Team (YST) with CBT for Black Youth with Acute Suicide Risk
将青年提名支持团队 (YST) 与针对有急性自杀风险的黑人青年的 CBT 相结合
- 批准号:
10573542 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别:
Social Media Use, Sleep, and Suicidality in Adolescents
青少年的社交媒体使用、睡眠和自杀倾向
- 批准号:
10815282 - 财政年份:2023
- 资助金额:
$ 18.86万 - 项目类别: