MINDER: Wearable sensor-based detection of digital biomarkers of adherence to medications for opioid use disorder
MINDER:基于可穿戴传感器的数字生物标记检测,用于检测阿片类药物使用障碍药物的依从性
基本信息
- 批准号:10656796
- 负责人:
- 金额:$ 68.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-06 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAdherenceAgonistAlgorithmsArtificial IntelligenceBehavior TherapyBiometryBuprenorphineClinicalCommunitiesCompanionsCustomDataData SetDetectionDevelopmentDevice or Instrument DevelopmentDigital biomarkerDrug ScreeningEventFoundationsHealth PersonnelHealth TechnologyHeart RateHumanIndividualInfrastructureIngestionInterventionLaboratoriesMachine LearningMeasuresMedical DeviceMedicineMethodologyMethodsModelingMonitorMorbidity - disease rateMotionNatureOpioidOpioid agonistOpticsOutcomeOverdose reductionPatient Self-ReportPatientsPersonsPhysiologic MonitoringPhysiologicalProcessPublic HealthRecordsRecoveryResearchResearch PersonnelRiskSkin TemperatureSupport SystemSystemSystems DevelopmentTestingTimeToxicologyUpper armUrineaddictionbuprenorphine treatmentclinical practicecomputer human interactiondata communicationdata ingestiondesigneffective therapyexperienceimprovedimproved outcomeinnovationiterative designmHealthmachine learning algorithmmachine learning modelmedication for opioid use disordermobile applicationmortalitynovelopen sourceopioid misuseopioid mortalityopioid useopioid use disorderoverdose deathprecision medicinepreferencepreventprototypereal time monitoringsensorsuccessusabilitywearable sensor technology
项目摘要
PROJECT SUMMARY/ABSRACT
Medications for opioid use disorder (MOUD), including the partial opioid agonist buprenorphine, provide a
treatment option for opioid use disorder (OUD) that significantly reduces morbidity and mortality. Even with
successful buprenorphine initiation, however, adherence is paramount to prevent return to non-medical opioid
use and its associated risks. Current methods of determining buprenorphine adherence are limited by their
retrospective nature and recall bias. We propose to develop a novel artificial intelligence-assisted wearable
sensor system, MINDER, which will continuously monitor physiologic changes, and will use machine learning
algorithms to accurately identify buprenorphine use. The MINDER system will be comprised of a custom
wearable sensor (MINDER-band), a companion mobile app and a clinician facing portal. The MINDER-band,
which is a low profile, upper arm band with a user-driven design, continuously records physiologic data. We will
use the band to curate a high-quality dataset of MOUD ingestions and subsequently use machine learning to
evaluate the ability of the sensor to detect MOUD (specifically buprenorphine) ingestion events. Finally, we will
deploy the MINDER system in real-world MOUD treatment settings to understand usability factors. The
investigative team brings together complementary expertise in toxicology/addiction medicine, mobile health
(Carreiro, Smelson), machine learning, human computer interaction (Venkatasubramanian), novel on-body
wearable sensors, and medical device development (Mankodiya, Solanki). The specific aims of the project are
to: 1) Understand the requirements, barriers, and facilitators for an ML driven buprenorphine adherence support
system, 2) Develop and test a novel wearable sensing system, MINDER, designed for individuals in
buprenorphine treatment, 3) Curate a high quality annotated dataset for machine learning-based modeling of
buprenorphine adherence, 4) Model the buprenorphine ingestion data collected from the MINDER-band to
build the ML algorithms infrastructure for the MINDER system. Upon completion, the MINDER system will be
ready for clinical deployment. This study will lay the groundwork for novel just-in-time adaptive behavioral
interventions to personalize OUD treatment, improve buprenorphine adherence and its success, and ultimately
reduce morbidity and mortality from OUD.
项目概要/摘要
阿片类药物使用障碍(MOUD)的药物,包括部分阿片类激动剂丁丙诺啡,提供了一个
阿片类药物使用障碍(OUD)的治疗选择,可显著降低发病率和死亡率。即使有
然而,成功地开始丁丙诺啡,坚持对于防止返回非医用阿片类药物至关重要
使用及其相关风险。目前确定丁丙诺啡依从性的方法受到它们的限制。
回溯性和回忆偏差。我们建议开发一种新型的人工智能辅助可穿戴设备,
传感器系统MINDER将持续监测生理变化,并将使用机器学习
准确识别丁丙诺啡使用的算法。MINDER系统将由一个定制的
可穿戴传感器(MINDER带)、配套移动的应用程序和面向临床医生的门户网站。MINDER乐队,
其是具有用户驱动设计的低轮廓上臂带,连续记录生理数据。我们将
使用该乐队来策划一个高质量的MOUD数据集,然后使用机器学习来
评估传感器检测MOUD(特别是丁丙诺啡)摄入事件的能力。最后我们将
在真实的MOUD治疗环境中部署MINDER系统,以了解可用性因素。的
调查小组汇集了毒理学/成瘾医学、移动的健康
(Carreiro、Smelson)、机器学习、人机交互(Venkatasubramanian)、小说体上
可穿戴传感器和医疗设备开发(Mankodiya,Solanki)。该项目的具体目标是
目的:1)了解ML驱动的丁丙诺啡依从性支持的要求、障碍和促进因素
系统,2)开发和测试一种新的可穿戴传感系统,MINDER,为个人设计,
丁丙诺啡治疗,3)为基于机器学习的建模策划高质量的注释数据集,
丁丙诺啡依从性,4)对从MINDER带收集的丁丙诺啡摄入数据进行建模,
为MINDER系统构建ML算法基础设施。完成后,MINDER系统将
准备临床部署。这项研究将为新型的即时适应行为奠定基础
干预措施,以个性化OUD治疗,提高丁丙诺啡的依从性及其成功率,并最终
降低OUD的发病率和死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANIE P CARREIRO其他文献
STEPHANIE P CARREIRO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANIE P CARREIRO', 18)}}的其他基金
RAE cHealth: A digital community support tool to promote recovery from substance use disorder
RAE cHealth:促进药物滥用障碍康复的数字社区支持工具
- 批准号:
10838804 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
The ANTIDOTE Institute- Advancing New Toxicology Investigators in Drug abuse and Original Translational research Efforts
ANTIDOTE Institute - 推动新毒理学研究人员在药物滥用和原创转化研究工作中的发展
- 批准号:
10681927 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
RAE cHealth: A digital community support tool to promote recovery from substance use disorder
RAE cHealth:促进药物滥用障碍康复的数字社区支持工具
- 批准号:
10469897 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别:
iTransform: Wearable Biosensors to Detect the Evolution of Opioid Tolerance in Opioid Naïve Individuals
iTransform:可穿戴生物传感器检测阿片类药物耐受性的演变
- 批准号:
9889092 - 财政年份:2019
- 资助金额:
$ 68.42万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
10356481 - 财政年份:2019
- 资助金额:
$ 68.42万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
10370419 - 财政年份:2019
- 资助金额:
$ 68.42万 - 项目类别:
RAE (Realize, Analyze, Engage)- A Digital Biomarker Based Detection and Intervention System for Stress and Craving During Recovery from Substance Abuse Disorders
RAE(实现、分析、参与)——一种基于数字生物标记的检测和干预系统,用于治疗药物滥用疾病恢复过程中的压力和渴望
- 批准号:
9545385 - 财政年份:2019
- 资助金额:
$ 68.42万 - 项目类别:
相似海外基金
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
- 批准号:
2325465 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Standard Grant
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Operating Grants
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Grant for R&D
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
Fellowship Programs














{{item.name}}会员




