Multi-Tensor Decompositions for Personalized Cancer Diagnostics and Prognostics

用于个性化癌症诊断和预后的多张量分解

基本信息

  • 批准号:
    9762591
  • 负责人:
  • 金额:
    $ 75.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-22 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Recurring DNA copy-number alterations (CNAs) have been recognized as a hallmark of cancer for >100 years, yet what these alterations imply about a tumor's pathogenesis and a patient's diagnosis, prognosis, and treatment remains poorly understood. This is despite the growing number of large-scale multidimensional datasets recording different aspects of a single disease, e.g., in the Cancer Genome Atlas (TCGA), and due to a fundamental need for mathematical frameworks that can create one coherent model from such multiple datasets arranged in multiple tensors of matched columns, e.g., patients, platforms, and tissues, but independent rows, e.g., probes. For example, our recent comparative modeling (by using a data-driven two-matrix spectral decomposition) of patient-matched glioblastoma (GBM) brain tumor and normal blood genomic profiles from TCGA (arranged in two matrices, of matched columns but independent rows) uncovered a previously unknown global pattern of tumor-exclusive CNAs that is correlated with, and possibly causally related to, GBM survival and response to chemotherapy. The data had been publicly available since 2008, but this signature remained unknown until we applied our comparative modeling in 2012. Survival analyses showed, and computationally validated, that the signature performs better than, and is statistically independent of, age, the best indicator of GBM survival for >50 years, and existing GBM pathology laboratory tests. A new test for GBM based upon this signature is pending an experimental re-validation at the Associated Regional and University Pathologists (ARUP) Laboratories, Inc., a nonprofit reference laboratory of the Department of Pathology at the University of Utah. In this NCI U01 project, our multidisciplinary team of researchers from the Departments of Bioengineering, Mathematics, and Pathology, the Scientific Computing and Imaging (SCI) Institute, and the Huntsman Cancer Institute (HCI) at the University of Utah, aims to (i) define, and study the properties of data- driven multi-tensor spectral decompositions; (ii) use these to model patient-, platform-, and tissue-matched but probe-independent TCGA genomic profiles, and gain biological and medical insights into the genotype- phenotype relations in lower-grade astrocytoma (LGA) brain cancer, ovarian serous cystadenocarcinoma (OV), and lung squamous cell carcinoma; and (iii) enable translation of these insights into pathology laboratory tests, by experimentally testing the computational predictions of the existing GBM model, as well as the novel LGA and OV models by using Utah samples. Ultimately, this project will bring physicians a step closer to one day being able to predict and control the progression of cell division and cancer as readily as NASA engineers plot the trajectories of spacecraft today.
 描述(由申请人提供):复发性DNA拷贝数改变(CNA)已被认为是癌症的标志超过100年,但这些改变对肿瘤的发病机制和患者的诊断,预后和治疗意味着什么仍然知之甚少。尽管越来越多的大型多维数据集记录了单一疾病的不同方面,例如,在癌症基因组图谱(TCGA)中,并且由于对数学框架的基本需求,该数学框架可以从以匹配列的多个张量布置的这样的多个数据集创建一个相干模型,例如,患者、平台和组织,但是独立的行,例如,probes. 例如,我们最近对来自TCGA的患者匹配的胶质母细胞瘤(GBM)脑肿瘤和正常血液基因组图谱(排列在两个矩阵中,匹配的列但独立的行)进行比较建模(通过使用数据驱动的双矩阵光谱分解),发现了一种以前未知的肿瘤特异性CNA的全球模式,该模式与GBM生存和对化疗的反应相关,并可能与之因果相关。自2008年以来,这些数据一直是公开的,但直到我们在2012年应用比较模型之前,这个特征仍然未知。生存分析显示,并且通过计算验证,该签名的表现优于年龄,并且在统计学上独立于年龄,年龄是GBM生存>50年的最佳指标,以及现有的GBM病理学实验室测试。基于该特征的GBM的新测试正在等待联合区域和大学病理学家实验室(ARUP)的实验重新验证,犹他州大学病理学系的一个非盈利参考实验室。 在这个NCI U 01项目中,我们来自生物工程、数学和病理学系、科学计算和成像(SCI)研究所和犹他州大学亨茨曼癌症研究所(HCI)的多学科研究人员团队旨在(i)定义和研究数据驱动的多张量谱分解的性质;(ii)使用这些来模拟患者匹配、平台匹配和组织匹配但不依赖于探针的TCGA基因组谱,并获得对低级星形细胞瘤(LGA)脑癌、卵巢浆液性囊腺癌(OV)和肺鳞状细胞癌中的基因型-表型关系的生物学和医学见解;以及(iii)通过使用犹他州样本实验性地测试现有GBM模型以及新LGA和OV模型的计算预测,使得能够将这些见解转化为病理学实验室测试。 最终,该项目将使医生更接近有一天能够预测和控制细胞分裂和癌症的进展,就像NASA工程师今天绘制航天器的轨迹一样。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Orly Alter其他文献

Orly Alter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Orly Alter', 18)}}的其他基金

Multi-Tensor Decompositions for Personalized Cancer Diagnostics and Prognostics
用于个性化癌症诊断和预后的多张量分解
  • 批准号:
    9334157
  • 财政年份:
    2015
  • 资助金额:
    $ 75.14万
  • 项目类别:
Tensor Computations for Modeling Large-Scale Molecular Biological Data
用于大规模分子生物学数据建模的张量计算
  • 批准号:
    8263086
  • 财政年份:
    2010
  • 资助金额:
    $ 75.14万
  • 项目类别:
Tensor Computations for Modeling Large-Scale Molecular Biological Data
用于大规模分子生物学数据建模的张量计算
  • 批准号:
    7925096
  • 财政年份:
    2009
  • 资助金额:
    $ 75.14万
  • 项目类别:
Tensor Computations for Modeling Large-Scale Molecular Biological Data
用于大规模分子生物学数据建模的张量计算
  • 批准号:
    7292994
  • 财政年份:
    2007
  • 资助金额:
    $ 75.14万
  • 项目类别:
Tensor Computations for Modeling Large-Scale Molecular Biological Data
用于大规模分子生物学数据建模的张量计算
  • 批准号:
    8207623
  • 财政年份:
    2007
  • 资助金额:
    $ 75.14万
  • 项目类别:
Tensor Computations for Modeling Large-Scale Molecular Biological Data
用于大规模分子生物学数据建模的张量计算
  • 批准号:
    8212604
  • 财政年份:
    2007
  • 资助金额:
    $ 75.14万
  • 项目类别:
Tensor Computations for Modeling Large-Scale Molecular Biological Data
用于大规模分子生物学数据建模的张量计算
  • 批准号:
    7487960
  • 财政年份:
    2007
  • 资助金额:
    $ 75.14万
  • 项目类别:
Tensor Computations for Modeling Large-Scale Molecular Biological Data
用于大规模分子生物学数据建模的张量计算
  • 批准号:
    7675400
  • 财政年份:
    2007
  • 资助金额:
    $ 75.14万
  • 项目类别:
MATHEMATICAL TOOLS FOR GENE EXPRESSION DATA ANALYSIS
用于基因表达数据分析的数学工具
  • 批准号:
    6388293
  • 财政年份:
    2000
  • 资助金额:
    $ 75.14万
  • 项目类别:
MATHEMATICAL TOOLS FOR GENE EXPRESSION DATA ANALYSIS
用于基因表达数据分析的数学工具
  • 批准号:
    6536453
  • 财政年份:
    2000
  • 资助金额:
    $ 75.14万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 75.14万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了