4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
基本信息
- 批准号:RGPIN-2017-04293
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed Discovery program will establish new imaging physics technologies utilizing spatiotemporal data sparsity, and correspondingly improve our biophysical understanding of specific rapidly dynamic physiological processes. Acquiring high quality - i.e., high signal-to-noise, contrast and spatial resolution - images typically requires large amounts of data, and is therefore seemingly at odds with obtaining the high temporal resolution data needed to accurately characterize dynamic systems. Recently, novel strategies for both data sampling and image reconstruction that take advantage of spatial and temporal redundancies (i.e. data sparsity), have improved our ability to acquire high quality quantitative maps that accurately model biophysical measurements that change quickly in time. While great strides have been made in this area, many highly dynamic biophysical processes remain unstudied, as the current tools do not provide sufficient spatial and temporal resolution to accurately characterize them.
Furthermore, this problem becomes even more challenging when studying individuals, rather than averaged populations, as the optimal strategy to both acquire and analyze the data is in part driven by the spatiotemporal features within that exact data set. Critically, while novel data sampling techniques can lead to high acceleration factors, physicists must be wary of simply trying to go faster because they can go faster. The “correct” data sampling and reconstruction scheme is the one that optimally connects the measured data with the actual biophysical property of interest. Determining what the correct strategy is can be a significant challenge in its own right. Hence, simulation and correlation to biology are critical.
This program coherently brings together basic research into new data acquisition technologies, image reconstruction techniques, and analysis tools for improving image characterization of spatiotemporally dynamic systems in the human body. All projects within this program will build from hypothesis generating theoretical simulations that will subsequently inform and guide the development of new technologies for the acquisition and/or analysis of empirical data, with validation through correlation to the underlying biophysical properties.
This work will be applied to a seemingly diverse spectrum of physiologic processes (e.g., Dynamic Contrast Enhancement and Functional Neuroimaging) and imaging technologies (e.g., MRI and MEG). However all research in this program has the common thread that it requires 4D data that must be acquired and analyzed such that it can be connected to a physiological parameter of interest in an individual. Doing so will build off of novel mathematical and physics approaches from the fields of imaging physics and data compression, and will flow directly from the research performed in my previous NSERC Discovery grant.
提出的Discovery项目将利用时空数据稀疏性建立新的成像物理技术,并相应地提高我们对特定快速动态生理过程的生物物理理解。获取高质量-即高信噪比、对比度和空间分辨率-图像通常需要大量数据,因此似乎与获得准确表征动态系统所需的高时间分辨率数据不一致。最近,利用空间和时间冗余(即数据稀疏性)的数据采样和图像重建的新策略提高了我们获得高质量定量地图的能力,这些地图可以准确地模拟随时间快速变化的生物物理测量。虽然在这一领域取得了巨大的进步,但许多高度动态的生物物理过程仍未得到研究,因为目前的工具不能提供足够的空间和时间分辨率来准确表征它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beyea, Steven其他文献
Comparison of Objective Image Quality Metrics to Expert Radiologists' Scoring of Diagnostic Quality of MR Images
- DOI:
10.1109/tmi.2019.2930338 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:10.6
- 作者:
Mason, Allister;Rioux, James;Beyea, Steven - 通讯作者:
Beyea, Steven
Beyea, Steven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beyea, Steven', 18)}}的其他基金
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Testing & validation of pre-clinical multispectral SPECT and simultaneous PET/MRI using silicon photomultiplier technology
测试
- 批准号:
499115-2016 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
"Novel Acquisition Techniques, Contrast Mechanisms & Data Analysis Algorithms for Studying Regional Differences in fMRI Sensitivity"
“新颖的采集技术、对比机制
- 批准号:
288166-2012 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Testing & validation of pre-clinical multispectral SPECT and simultaneous PET/MRI using silicon photomultiplier technology
测试
- 批准号:
499115-2016 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
"Novel Acquisition Techniques, Contrast Mechanisms & Data Analysis Algorithms for Studying Regional Differences in fMRI Sensitivity"
“新颖的采集技术、对比机制
- 批准号:
288166-2012 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
"Novel Acquisition Techniques, Contrast Mechanisms & Data Analysis Algorithms for Studying Regional Differences in fMRI Sensitivity"
“新颖的采集技术、对比机制
- 批准号:
288166-2012 - 财政年份:2014
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
In Vivo & Phantom Based Resolution/Sensitivity Benchmarking of a Next Generation Table-Top SPECT
体内
- 批准号:
471097-2014 - 财政年份:2014
- 资助金额:
$ 3.35万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
非小细胞肺癌Biomarker的Imaging MS研究新方法
- 批准号:30672394
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Spatially Profiling the Human Breast Cancer Tissue Tumor Microenvironment using Phenocylcer (CODEX) Multiplex Imaging
使用 Phenocylcer (CODEX) 多重成像对人类乳腺癌组织肿瘤微环境进行空间分析
- 批准号:
498211 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Studentship Programs
Spatially Resolved Analytical Chemistry: Magnetic Resonance and Magnetic Resonance Imaging of Materials and Processes.
空间分辨分析化学:材料和过程的磁共振和磁共振成像。
- 批准号:
RGPIN-2022-04003 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Development of spatially-compressive optics for ultra-thin imaging systems.
开发用于超薄成像系统的空间压缩光学器件。
- 批准号:
575933-2022 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
- 批准号:
10580393 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
- 批准号:
RGPIN-2015-06122 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Single-cell and imaging data integration software to spatially resolve the tumor microenvironment
用于空间解析肿瘤微环境的单细胞和成像数据集成软件
- 批准号:
10457312 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
- 批准号:
RGPIN-2015-06122 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Single-cell and imaging data integration software to spatially resolve the tumor microenvironment
用于空间解析肿瘤微环境的单细胞和成像数据集成软件
- 批准号:
10058504 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Close-loop, spatially addressable multiphoton functional imaging
闭环、空间可寻址多光子功能成像
- 批准号:
10246271 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别: