Clinical Core

临床核心

基本信息

  • 批准号:
    9898112
  • 负责人:
  • 金额:
    $ 169.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-26 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT CLINICAL CORE The broad long-term objective of the UM BACPAC MRC Clinical Core will be to provide an enduring resource for the NIH BACPAC initiative. The data collected and cohorts established throughout the course of this project will remain a resource for a wide array of individuals and entities that conduct clinical pain research. The more immediate objective of the UM Clinical Core will be to provide the substrate for the successful completion of all four Specific Aims noted in the Overview for this application. The Interventional Response Phenotyping research project central to this effort will rely heavily on the patient population, existing registry, and research infrastructure of the Department of Anesthesiology’s Back and Pain Center at the University of Michigan and the experienced research team at the Chronic Pain and Fatigue Research Center (CPFRC). Both centers, working in concert, will make up the UM Clinical Core. The Michigan Medicine Back & Pain Center is a large tertiary care pain clinic that evaluates over 1500 new patients per year and conducts nearly three times as many return patient visits The Back & Pain Center has a pain patient registry (>8700) with rich pain phenotyping data, including numerous PROMIS measures, that are routinely collected from most of the new patients evaluated each year at the pain clinic. Further, there are nested cohort studies based on the data of registry patients, as well as randomized controlled trials that draw from them and are managed by the experienced study personnel. Similarly, the CPFRC has a long and rich history of successfully collecting the types of deep phenotyping data specified herein (e.g., neuroimaging, quantitative sensory testing [QST], inflammatory factors, ecological momentary assessment [EMA]) and has been a leader in the field of pain research for close to two decades. The UM Clinical Core will tap into our existing infrastructure and well- phenotyped patient population and address the following aims. First, the UM Clinical Core will provide the infrastructure and resources for the baseline assessment and both light and deep phenotyping data collection including the processing and analysis of neurobiological samples. Second, it will support the Interventional Response Phenotyping study through the recruitment, enrollment and retention of patient participants with chronic low back pain. Third, the UM Clinical Core will support the provision of the SMART design study interventions to be used in the Interventional Response Phenotyping study. Lastly, the clinical core will coordinate with the Informatics Core and Algorithm Development and Operations Management Center (DAC) for data management, statistical analysis and data sharing.
项目总结/摘要 临床核心 UM BACPAC MRC临床核心的广泛长期目标是提供持久的资源 关于NIH BACPAC的倡议。在整个项目过程中收集的数据和建立的队列 将仍然是进行临床疼痛研究的各种个人和实体的资源。越 UM临床核心的直接目标将是为成功完成所有 本申请概述中提到的四个具体目标。干预反应表型分析 这项工作的核心研究项目将在很大程度上依赖于患者人群、现有登记和研究 密歇根大学麻醉科背部和疼痛中心的基础设施, 慢性疼痛和疲劳研究中心(CPFRC)的经验丰富的研究团队。两个中心, 协同工作,将组成UM临床核心。密歇根医学背部和疼痛中心是一个大型的 三级护理疼痛诊所,每年评估超过1500名新患者,并进行近三次, 背部和疼痛中心有一个疼痛患者登记处(>8700), 表型数据,包括许多PROMIS措施,这是例行收集的大多数新的 每年在疼痛诊所接受评估的患者。此外,还有基于以下数据的嵌套队列研究: 登记的患者,以及随机对照试验,从他们和管理 经验丰富的研究人员。同样,CPFRC在成功收集 在此指定的深度表型数据的类型(例如,神经成像,定量感觉测试[QST], 炎症因子,生态瞬时评估[EMA]),并一直是疼痛领域的领导者 近二十年的研究。UM临床核心将利用我们现有的基础设施,以及- 表型分型的患者群体,并解决以下目标。首先,UM临床核心将提供 用于基线评估以及轻度和深度表型数据收集的基础设施和资源 包括神经生物学样本的处理和分析。第二,支持干预 通过招募、入组和保留患者参与者的缓解表型研究 慢性下背痛。第三,UM临床核心将支持SMART设计研究的提供 干预反应表型研究中使用的干预措施。最后,临床核心将 与信息学核心和算法开发与运营管理中心(DAC)协调 用于数据管理、统计分析和数据共享。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Afton L Hassett其他文献

Organ system-involvement in SLE and relationship with demographic factors, disease duration and health-related quality of life in childhood SLE
  • DOI:
    10.1186/1546-0096-10-s1-a22
  • 发表时间:
    2012-07-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Lakshmi N Moorthy;Maria J Baratelli;Margaret GE Peterson;Afton L Hassett;Alexa B Adams;Laura V Barinstein;Emma J MacDermott;Elizabeth C Chalom;Karen Onel;Linda I Ray;Jorge Lopez-Benitez;Christina Pelajo;Kathleen A Haines;Daniel J Kingsbury;Victoria W Cartwright;Philip J Hashkes;Nora G Singer;Gina A Montealegres;Ingrid Tomanova-Soltys;Andreas O Reiff;Sandy D Hong;Thomas JA Lehman
  • 通讯作者:
    Thomas JA Lehman

Afton L Hassett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Afton L Hassett', 18)}}的其他基金

Clinical Core
临床核心
  • 批准号:
    10765815
  • 财政年份:
    2019
  • 资助金额:
    $ 169.57万
  • 项目类别:
Resilience Skills Self-Management for Chronic Pain
慢性疼痛的自我管理弹性技能
  • 批准号:
    9900058
  • 财政年份:
    2017
  • 资助金额:
    $ 169.57万
  • 项目类别:
Resilience Skills Self-Management for Chronic Pain
慢性疼痛的自我管理弹性技能
  • 批准号:
    10116990
  • 财政年份:
    2017
  • 资助金额:
    $ 169.57万
  • 项目类别:
THE ROLE OF CO-MORBID MENTAL DISORDERS IN LYME DISEASE
共病精神障碍在莱姆病中的作用
  • 批准号:
    6724865
  • 财政年份:
    2002
  • 资助金额:
    $ 169.57万
  • 项目类别:
THE ROLE OF CO-MORBID MENTAL DISORDERS IN LYME DISEASE
共病精神障碍在莱姆病中的作用
  • 批准号:
    6622827
  • 财政年份:
    2002
  • 资助金额:
    $ 169.57万
  • 项目类别:
THE ROLE OF CO-MORBID MENTAL DISORDERS IN LYME DISEASE
共病精神障碍在莱姆病中的作用
  • 批准号:
    6457510
  • 财政年份:
    2002
  • 资助金额:
    $ 169.57万
  • 项目类别:
THE ROLE OF CO-MORBID MENTAL DISORDERS IN LYME DISEASE
共病精神障碍在莱姆病中的作用
  • 批准号:
    6862711
  • 财政年份:
    2002
  • 资助金额:
    $ 169.57万
  • 项目类别:
THE ROLE OF CO-MORBID MENTAL DISORDERS IN LYME DISEASE
共病精神障碍在莱姆病中的作用
  • 批准号:
    7061297
  • 财政年份:
    2002
  • 资助金额:
    $ 169.57万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 169.57万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了