FAST platform for same-shift, complete antibiotic menu antibiotic susceptibility testing
用于同班、完整抗生素菜单抗生素敏感性测试的 FAST 平台
基本信息
- 批准号:9464993
- 负责人:
- 金额:$ 29.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithm DesignAlgorithmsAmplifiersAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsBacterial Antibiotic ResistanceBiological AssayBlindedBloodCenters for Disease Control and Prevention (U.S.)ChemicalsClinicalClinical MedicineClinical MicrobiologyCombating Antibiotic Resistant BacteriaCommunicable DiseasesDetectionDevelopmentDevicesDiagnosticEnd Point AssayEngineeringEnsureEpidemicEscherichia coliFundingGoalsGrantHealthcareHourHumanIn VitroInfectionInstitutesInvadedLaboratoriesLength of StayMachine LearningMetabolicMethodsMicrobiologyMinimum Inhibitory Concentration measurementOpticsPathogenicityPatient CarePatientsPhasePhenotypePlaguePositioning AttributePrivatizationQuality of CareReagentRecoveryRegulatory AffairsSamplingSampling StudiesScientistSmall Business Innovation Research GrantSpeedStaphylococcus aureusSystemTest ResultTestingVancomycinWorkaccurate diagnosisbaseclinically relevantcombatcommercializationcostcost effectivenessdesigndetectorindividual patientinstrumentnanosensorsnoveloptimal treatmentspathogenperformance testsprediction algorithmprototyperapid diagnosis
项目摘要
The goal of this Phase I SBIR proposal is to demonstrate utility to all major pathogenic
bacterial strains of SeLux’s rapid, low-cost, phenotypic antibiotic susceptibility test
(AST) system (fast-AST or FAST). Utilizing existing optical detectors and standard dried
antibiotic microplates, and avoiding pitfalls of metabolic probes, FAST will potentially transform
therapy of infections by significantly accelerating AST, thereby facilitating treatment with the
optimal antibiotic. Aim 1 will apply FAST to hundreds of samples of pathogenic bacterial strains,
while developing and optimizing a predictive algorithm for clinical utility. Aim 2 will extend the
FAST platform to slow-growing strains and species as well. SeLux has demonstrated FAST to
exceed FDA 510(k) requirements for minimum inhibitory concentration determinations for 25+
strains of Staphylococcus aureus and Escherichia coli with full antibiotic panels. Completion of
the proposed aims will expand FAST to all major clinically-relevant, non-fastidious bacterial
pathogens. SeLux’s interdisciplinary team has expertise in nanosensing, microbiology, and
algorithm design and is buttressed by distinguished experts in Clinical Microbiology, Infectious
Disease, and Machine Learning.
第一阶段SBIR提案的目标是证明对所有主要致病性
SeLux快速、低成本、表型抗生素敏感性试验的菌株
(AST)系统(FAST或FAST)。利用现有的光学探测器和标准干燥
抗生素微孔板,并避免代谢探针的陷阱,FAST将有可能改变
通过显著加速AST治疗感染,从而促进用
最佳抗生素目标1将把FAST应用于数百个致病细菌菌株的样本,
同时开发和优化用于临床应用的预测算法。目标2将扩大
FAST平台也适用于生长缓慢的菌株和物种。SeLux已经证明FAST可以
超过FDA 510(k)对25+的最低抑菌浓度测定的要求
金黄色葡萄球菌和大肠杆菌菌株,并配有完整的抗生素面板。完成
拟议的目标是将FAST扩展到所有主要的临床相关的非苛养细菌,
病原体SeLux的跨学科团队拥有纳米传感,微生物学和
算法设计,并得到临床微生物学、感染学和
疾病和机器学习。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC STERN其他文献
ERIC STERN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC STERN', 18)}}的其他基金
Next-generation phenotypic antimicrobial susceptibility test platform: rapid resultsand comprehensive menus
下一代表型抗菌药物敏感性测试平台:快速结果和全面的菜单
- 批准号:
10325484 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别:
Next-generation phenotypic antimicrobial susceptibility test platform: rapid results and comprehensive menus
下一代表型抗菌药物敏感性测试平台:快速结果和全面的菜单
- 批准号:
9892951 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别:
Next-generation phenotypic antimicrobial susceptibility test platform: rapid resultsand comprehensive menus
下一代表型抗菌药物敏感性测试平台:快速结果和全面的菜单
- 批准号:
10477291 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别:
Novel Platform for Improving Access to and Efficacy of Fertility Treatments
提高生育治疗的可及性和有效性的新平台
- 批准号:
9046502 - 财政年份:2016
- 资助金额:
$ 29.89万 - 项目类别:
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




