Mechanistic control of metabolism and virulence by fatty acid kinase in MRSA
MRSA 脂肪酸激酶代谢和毒力的机制控制
基本信息
- 批准号:9900730
- 负责人:
- 金额:$ 38.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-24 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcetatesAddressAmino AcidsAntibioticsAttenuatedBacteriaBindingBiological AssayBypassCarbonCarrier ProteinsCell physiologyCellsCitric Acid CycleCleaved cellComplementComplexDangerousnessDataDevelopmentDiseaseElectron TransportEnvironmentEnzymesEssential Amino AcidsFatty AcidsGene ExpressionGenesGenetic TranscriptionGlucoseGoalsGram-Positive BacteriaGrowthHemolysinIn VitroInfectionInfectious Skin DiseasesKineticsLeadLightLinkMammalsMembrane LipidsMembrane PotentialsMetabolismModelingMusMutagenesisMutationPAWR proteinPathogenicityPeptide HydrolasesPhenotypePhosphotransferasesPlayProductionProteinsProteomicsQuantitative Reverse Transcriptase PCRRegulationReporterResourcesRoleSignal TransductionSourceSpecificityStaphylococcus aureusStaphylococcus aureus infectionStreptococcusStructureStructure-Activity RelationshipSurfaceSystemTestingTimeToxinVirulenceVirulence FactorsWorkanimal imagingbasecombatcommensal bacteriacytotoxicdesignfatty acid-binding proteinsgenetic regulatory proteinhuman diseasehuman pathogenin vivoin vivo monitoringinsightmembermembrane synthesismetabolomicsmethicillin resistant Staphylococcus aureusmouse modelmutantnovelnovel strategiesnovel therapeutic interventionpathogenprotein functionprotein protein interactionresponsetooltranscription factortranscriptome sequencinguptake
项目摘要
PROJECT SUMMARY/ABSTRACT
Staphylococcus aureus is a successful human pathogen due to a large repertoire of virulence factors, including
a variety of toxins, such as α-hemolysin, that kill host cells and multiple secreted proteases that cleave both
bacterial and host proteins. A key regulatory system for virulence factor production is the SaeRS two-
component system, which activates or represses gene expression in response to an unknown signal. Recently,
we identified VfrB, a conserved hypothetical protein in all gram-positive bacteria, which regulates virulence
factor production consistent with altered SaeRS activity. VfrB requires a functional SaeRS to control hemolysin
production and a constitutively-active SaeS bypasses the need for VfrB in α-hemolysin expression, suggesting
that VfrB plays a role in activating SaeS. In addition, we found that a mutant lacking VfrB has enhanced
virulence in a mouse model of skin infection. Our further studies revealed that VfrB is a novel fatty acid kinase
that works in conjunction with two uncharacterized fatty acid carrier proteins, FakB1 and FakB2, to incorporate
exogenous fatty acids into the cell. Disruption of this system not only alters virulence and fatty acid uptake, but
also changes growth kinetics and acetate metabolism in vitro. Interestingly, FakB2 has specificity for fatty acids
not produced by this bacterium but are abundant in mammals, suggesting that VfrB and FakB may constitute a
host recognition system.
Based on this information, we hypothesize that VfrB in S. aureus directs carbon flow through acetate
metabolism while at the same time activating the Sae system to modulate virulence. To test this
hypothesis, three specific aims are proposed. Aim1 utilizes directed and global approaches to examine
changes in cellular metabolism during growth, with a focus on acetate metabolism. Aim 2 uses mutagenesis to
identify amino acids of VfrB, FakB1 and FakB2 that are essential for function. The mutants will be subjected to
a panel of tests to examine changes in virulence factor production, protein-protein interactions and fatty acid
binding. To support these studies, solving the structure of VfrB is proposed. Finally, Aim 3 will determine the
stage at which VfrB controls SaeS activation, utilizing mutants and SaeRS-dependent reporters to examine the
activation state of SaeRS in a mutant lacking VfrB. Aim 3 also seeks to define how VfrB regulates virulence
factors in the host, and how this leads to enhanced virulence in the ∆vfrB mutant. This will be addressed using
a skin infection model to determine the contributions of α-hemolysin and proteases during infection by the
∆vfrB mutant. Finally, expression of the Aur protease and α-hemolysin will be monitored in vivo using
proteomics and live-animal imaging. Completion of these studies will provide insight into the activity of
our recently-identified fatty acid kinase complex found in all gram-positive bacteria and will shed new
light on the metabolism and regulation of virulence factors contributing to S. aureus infection.
项目摘要/摘要
金黄色葡萄球菌是一种成功的人类病原体,原因是大量的毒力因子,包括
一种毒素,如α-溶血素,可杀死宿主细胞和裂解两者的多种分泌的蛋白酶
细菌和宿主蛋白。毒力因子生产的一个关键监管系统是SaeRS两个-
成分系统,它激活或抑制基因表达,以响应未知信号。最近,
我们鉴定了VfrB,它是所有革兰氏阳性细菌中的一种保守的假设蛋白,它调节着毒力
因子生产与SaeRS活性的变化一致。VfrB需要功能性的SAERS来控制溶血素
生产和结构性活性的SAE绕过了α-溶血素表达中对VfrB的需要,这表明
VfrB在激活SAE中起作用。此外,我们发现一个缺乏VfrB的突变体增强了
皮肤感染的小鼠模型中的毒性。我们的进一步研究表明,VfrB是一种新的脂肪酸激酶
它与两种未鉴定的脂肪酸载体蛋白FakB1和FakB2一起工作,以整合
外源脂肪酸进入细胞。该系统的破坏不仅改变了毒力和脂肪酸的摄取,而且
也改变了体外的生长动力学和醋酸酯代谢。有趣的是,FakB2对脂肪酸具有专一性
不是由这种细菌产生的,但在哺乳动物中大量存在,这表明VfrB和FakB可能构成了
主机识别系统。
根据这些信息,我们推测金黄色葡萄球菌中的VfrB引导碳流通过醋酸盐。
同时激活SAE系统来调节毒力。为了测试这一点
假设,提出了三个具体目标。AIM1使用定向和全局方法来检查
生长过程中细胞代谢的变化,重点是醋酸盐代谢。AIM 2使用诱变技术
确定功能所必需的VfrB、FakB1和FakB2的氨基酸。变种人将受到
一组检测毒力因子产生、蛋白质-蛋白质相互作用和脂肪酸变化的测试
有约束力的。为了支持这些研究,提出了解决VfrB结构的方法。最后,目标3将决定
VfrB控制SAE激活的阶段,利用突变体和SaeRS依赖的报告来检查
缺失VfrB的突变体中SaeRS的激活状态。Aim 3还试图定义VfrB是如何调节毒力的
宿主中的因素,以及这如何导致∆vfrB突变体的毒力增强。这将通过以下方式解决
一种皮肤感染模型,以确定α-溶血素和蛋白酶在感染过程中的作用
∆vfrB突变体。最后,AUR蛋白水解酶和α-溶血素的表达将在体内使用
蛋白质组学和活体动物成像。这些研究的完成将使我们能够深入了解
我们最近发现的脂肪酸激酶复合体在所有革兰氏阳性细菌中都有发现,并将释放出新的
金黄色葡萄球菌感染毒力因子的代谢与调控。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fatty acids can inhibit Staphylococcus aureus SaeS activity at the membrane independent of alterations in respiration.
- DOI:10.1111/mmi.14830
- 发表时间:2021-11
- 期刊:
- 影响因子:3.6
- 作者:DeMars ZR;Krute CN;Ridder MJ;Gilchrist AK;Menjivar C;Bose JL
- 通讯作者:Bose JL
Measuring Staphylococcal Promoter Activities Using a Codon-Optimized β-Galactosidase Reporter.
- DOI:10.1007/978-1-0716-1550-8_6
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Krute CN;Seawell NA;Bose JL
- 通讯作者:Bose JL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Lee Bose其他文献
Jeffrey Lee Bose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Lee Bose', 18)}}的其他基金
Contribution of Spx to Staphylococcus aureus physiology and virulence
Spx 对金黄色葡萄球菌生理学和毒力的贡献
- 批准号:
10611333 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Contribution of Spx to Staphylococcus aureus physiology and virulence
Spx 对金黄色葡萄球菌生理学和毒力的贡献
- 批准号:
10372567 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Redefining fatty acid degradation by Staphylococcus aureus
重新定义金黄色葡萄球菌的脂肪酸降解
- 批准号:
10040249 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Mechanistic control of metabolism and virulence by fatty acid kinase in MRSA
MRSA 脂肪酸激酶代谢和毒力的机制控制
- 批准号:
9176725 - 财政年份:2016
- 资助金额:
$ 38.25万 - 项目类别:
The Molecular Control of Cell Death in Staphylococcus aureus
金黄色葡萄球菌细胞死亡的分子控制
- 批准号:
7915540 - 财政年份:2009
- 资助金额:
$ 38.25万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Research Grant














{{item.name}}会员




