Predicting Parkinson's Disease Progression Rate Using Causal Measures of Functional MRI with Deep Learning Predictive Models
使用功能 MRI 的因果测量和深度学习预测模型来预测帕金森病的进展率
基本信息
- 批准号:9909889
- 负责人:
- 金额:$ 3.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAlzheimer&aposs DiseaseBiological MarkersBrainCharacteristicsClinicalClinical TrialsCommunitiesComputer softwareDataData SetDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionEtiologyFiberFloridaFunctional Magnetic Resonance ImagingImageIndividualLearningLiteratureMachine LearningMagnetic Resonance ImagingMeasuresMedical centerMethodsModelingNational Institute of Neurological Disorders and StrokeNerve DegenerationNeurobiologyNeurodegenerative DisordersNeurologicNoiseOutcomeParkinson DiseasePatientsPerformancePharmaceutical PreparationsProcessResearchRestSignal TransductionSiteStrokeStructureTexasTimeTrainingUniversitiesWorkbaseblood oxygen level dependentcognitive testingdeep learningimprovedinterestlearning communitylearning strategynervous system disorderneural networkneuroimaging markernoveloutcome forecastpatient stratificationpredictive modelingprognostic valueprogramsprogression markerprospectivetractography
项目摘要
Project abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. A critical gap in the treatment
of PD patients is that there is no clinically adopted method to predict an individual's progression rate. A predictor
would enable the enrichment of disease modifying drug trials with fast progressors likely to show changes in the
short duration of a clinical trial and enable a more informed discussion with patients about their prognosis. This
proposal develops a composite biomarker of progression rate using the connectivity information provided by
resting-state functional Magnetic Resonance Imaging (rs-fMRI) and deep learning. Deep learning (DL) is well
suited to form predictive models because it learns both an optimal hierarchy of features and how to combine
them for accurate prediction. In rs-fMRI the blood-oxygen level dependent signal can be analyzed to infer
connectivity throughout the brain. Traditionally, connectivity has been computed as the correlation between
average regional activation time courses. However correlation based connectivity is prone to inferring spurious
connections due to its inability to distinguish indirect from direct connectivity and inability to distinguish
bidirectional from unidirectional connectivity. A causal connectivity approach can discern these differences and
thereby provide a more faithful characterization of the true neurobiological connectivity. The existing literature
suggests connectivity, particularly causal connectivity, from rs-fMRI can inform the estimation of PD progression,
but the attempt to predict progression rate with causal connectivity in a DL model is unique to this project.
This research develops several distinct approaches for building a progression rate predictor and apply
them to three datasets including: the Parkinson's Progression Markers Initiative dataset, the NINDS Parkinson's
Disease Biomarkers Program (PDBP) dataset, and the University of Texas Southwestern Medical Center's
prospective imaging extension to the NINDS PBDP. In these studies, individual progression rates have been
tracked over multiple years using multiple clinical measures. First, causal and correlative measures will be
generated regionally and used with a DL model to create a baseline predictor of progression rate. Second, voxel-
level causal measures will be generated as the increased granularity is expected to improve prediction accuracy.
Third, since purely data-driven DL methods can be sensitive to dataset limitations, such as insufficient subjects
and noise, these limitations will be addressed by developing a new structural connectivity regularization
approach that constrains causal connectivity by the subject's own diffusion MRI. This regularization method will
be general and likely applicable for building predictors for other neurological disorders such as stroke and
Alzheimer's disease. This proposal will yield both DL models for predicting progression rate and a novel method
to calculate constrained causal connectivity. All predictive models, composite neuroimaging biomarkers of
progression rate and software will be publicly disseminated for ready incorporation by the scientific and clinical
communities.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cooper James Mellema其他文献
Cooper James Mellema的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cooper James Mellema', 18)}}的其他基金
Predicting Parkinson's Disease Progression Rate Using Causal Measures of Functional MRI with Deep Learning Predictive Models
使用功能 MRI 的因果测量和深度学习预测模型来预测帕金森病的进展率
- 批准号:
10227044 - 财政年份:2019
- 资助金额:
$ 3.4万 - 项目类别:
Predicting Parkinson's Disease Progression Rate Using Causal Measures of Functional MRI with Deep Learning Predictive Models
使用功能 MRI 的因果测量和深度学习预测模型来预测帕金森病的进展率
- 批准号:
10019347 - 财政年份:2019
- 资助金额:
$ 3.4万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 3.4万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 3.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 3.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 3.4万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 3.4万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 3.4万 - 项目类别:
Research Fellowships