Predicting Parkinson's Disease Progression Rate Using Causal Measures of Functional MRI with Deep Learning Predictive Models
使用功能 MRI 的因果测量和深度学习预测模型来预测帕金森病的进展率
基本信息
- 批准号:10227044
- 负责人:
- 金额:$ 3.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAlzheimer&aposs DiseaseBiological MarkersBrainCharacteristicsClinicalClinical TrialsCommunitiesComputer softwareDataData SetDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionEtiologyFiberFloridaFunctional Magnetic Resonance ImagingImageIndividualLearningLiteratureMachine LearningMagnetic Resonance ImagingMeasuresMedical centerMethodsModelingMovement Disorder Society Unified Parkinson&aposs Disease Rating ScaleNational Institute of Neurological Disorders and StrokeNerve DegenerationNeurobiologyNeurodegenerative DisordersNeurologicNoiseOutcomeParkinson DiseasePatientsPerformancePharmaceutical PreparationsProcessPrognosisResearchRestSignal TransductionSiteStrokeStructureTexasTimeTrainingUniversitiesWorkbaseblood oxygen level dependentcognitive testingdeep learningimprovedinterestlearning communitylearning strategynervous system disorderneural networkneuroimaging markernovelpatient stratificationpredictive modelingprognostic valueprogramsprogression markerprospectivetractography
项目摘要
Project abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. A critical gap in the treatment
of PD patients is that there is no clinically adopted method to predict an individual's progression rate. A predictor
would enable the enrichment of disease modifying drug trials with fast progressors likely to show changes in the
short duration of a clinical trial and enable a more informed discussion with patients about their prognosis. This
proposal develops a composite biomarker of progression rate using the connectivity information provided by
resting-state functional Magnetic Resonance Imaging (rs-fMRI) and deep learning. Deep learning (DL) is well
suited to form predictive models because it learns both an optimal hierarchy of features and how to combine
them for accurate prediction. In rs-fMRI the blood-oxygen level dependent signal can be analyzed to infer
connectivity throughout the brain. Traditionally, connectivity has been computed as the correlation between
average regional activation time courses. However correlation based connectivity is prone to inferring spurious
connections due to its inability to distinguish indirect from direct connectivity and inability to distinguish
bidirectional from unidirectional connectivity. A causal connectivity approach can discern these differences and
thereby provide a more faithful characterization of the true neurobiological connectivity. The existing literature
suggests connectivity, particularly causal connectivity, from rs-fMRI can inform the estimation of PD progression,
but the attempt to predict progression rate with causal connectivity in a DL model is unique to this project.
This research develops several distinct approaches for building a progression rate predictor and apply
them to three datasets including: the Parkinson's Progression Markers Initiative dataset, the NINDS Parkinson's
Disease Biomarkers Program (PDBP) dataset, and the University of Texas Southwestern Medical Center's
prospective imaging extension to the NINDS PBDP. In these studies, individual progression rates have been
tracked over multiple years using multiple clinical measures. First, causal and correlative measures will be
generated regionally and used with a DL model to create a baseline predictor of progression rate. Second, voxel-
level causal measures will be generated as the increased granularity is expected to improve prediction accuracy.
Third, since purely data-driven DL methods can be sensitive to dataset limitations, such as insufficient subjects
and noise, these limitations will be addressed by developing a new structural connectivity regularization
approach that constrains causal connectivity by the subject's own diffusion MRI. This regularization method will
be general and likely applicable for building predictors for other neurological disorders such as stroke and
Alzheimer's disease. This proposal will yield both DL models for predicting progression rate and a novel method
to calculate constrained causal connectivity. All predictive models, composite neuroimaging biomarkers of
progression rate and software will be publicly disseminated for ready incorporation by the scientific and clinical
communities.
项目摘要
帕金森病(Parkinson's disease,PD)是第二常见的神经退行性疾病。治疗上的一个关键差距
目前还没有临床上采用的方法来预测个体的进展率。预测器
将使疾病修饰药物试验的丰富与快速进展可能显示出变化,
临床试验持续时间短,并能够与患者就其预后进行更知情的讨论。这
建议使用以下提供的连接信息开发进展率的复合生物标志物:
静息态功能性磁共振成像(rs-fMRI)和深度学习。深度学习(DL)
适合于形成预测模型,因为它既学习最佳的特征层次结构,又学习如何将联合收割机
准确预测。在rs-fMRI中,血氧水平依赖信号可以被分析以推断
连接整个大脑。传统上,连接性被计算为以下各项之间的相关性:
平均区域激活时间课程。然而,基于相关性的连接性易于推断虚假的
由于无法区分直接连接和间接连接,
从单向连接到双向连接。因果联系方法可以识别这些差异,
从而提供真实神经生物学连接的更忠实的表征。现有文献
提示rs-fMRI的连接性,特别是因果连接性,可以为PD进展的估计提供信息,
但在DL模型中用因果连接预测进展率的尝试是该项目所独有的。
这项研究开发了几种不同的方法来建立一个进展率预测和应用
他们到三个数据集,包括:帕金森病进展标志物倡议数据集,NINDS帕金森病
疾病生物标志物计划(PDBP)数据集和德克萨斯大学西南医学中心的
NINDS PBDP的前瞻性成像扩展。在这些研究中,个体进展率已被
使用多种临床指标跟踪多年。首先,因果和相关措施将是
区域性生成并与DL模型一起使用,以创建进展率的基线预测因子。第二,体素-
将产生等级因果测量,因为预期增加的粒度将提高预测准确性。
第三,由于纯数据驱动的深度学习方法可能对数据集限制敏感,例如受试者不足
和噪声,这些限制将通过开发新的结构连接正则化来解决
通过受试者自身的扩散MRI约束因果连接的方法。这种正则化方法将
是普遍的,并可能适用于建立其他神经系统疾病,如中风和
老年痴呆症该建议将产生用于预测进展率的DL模型和一种新方法
来计算约束因果连通性。所有预测模型,复合神经影像学生物标志物
进展率和软件将公开传播,以便科学和临床
社区.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reproducible neuroimaging features for diagnosis of autism spectrum disorder with machine learning.
- DOI:10.1038/s41598-022-06459-2
- 发表时间:2022-02-23
- 期刊:
- 影响因子:4.6
- 作者:Mellema CJ;Nguyen KP;Treacher A;Montillo A
- 通讯作者:Montillo A
Architectural configurations, atlas granularity and functional connectivity with diagnostic value in Autism Spectrum Disorder.
- DOI:10.1109/isbi45749.2020.9098555
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Mellema CJ;Treacher A;Nguyen KP;Montillo A
- 通讯作者:Montillo A
Improved motion correction for functional MRI using an omnibus regression model.
- DOI:10.1109/isbi45749.2020.9098688
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Raval V;Nguyen KP;Mellema C;Montillo A
- 通讯作者:Montillo A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cooper James Mellema其他文献
Cooper James Mellema的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cooper James Mellema', 18)}}的其他基金
Predicting Parkinson's Disease Progression Rate Using Causal Measures of Functional MRI with Deep Learning Predictive Models
使用功能 MRI 的因果测量和深度学习预测模型来预测帕金森病的进展率
- 批准号:
9909889 - 财政年份:2019
- 资助金额:
$ 3.55万 - 项目类别:
Predicting Parkinson's Disease Progression Rate Using Causal Measures of Functional MRI with Deep Learning Predictive Models
使用功能 MRI 的因果测量和深度学习预测模型来预测帕金森病的进展率
- 批准号:
10019347 - 财政年份:2019
- 资助金额:
$ 3.55万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 3.55万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 3.55万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 3.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 3.55万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 3.55万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 3.55万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 3.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 3.55万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 3.55万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 3.55万 - 项目类别:
Research Fellowships