High Capacity UltraFISH for Single-cell Spatial Transcriptomics
用于单细胞空间转录组学的高容量 UltraFISH
基本信息
- 批准号:9909612
- 负责人:
- 金额:$ 49.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-19 至 2021-11-18
- 项目状态:已结题
- 来源:
- 关键词:AcademiaBiologicalBiological AssayBiological ModelsBiologyBiotechnologyBypassCell LineCellsCellular biologyCodeCollaborationsColorComplexComputer softwareDNADetectionDiagnosticDisadvantagedDiseaseDyesExonsFormalinFreezingFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenomicsGoalsHela CellsHeterogeneityHourHumanImageImage AnalysisIn SituIndustryLabelLiquid substanceMammalian CellMedicalMethodsMicroscopeMolecularOligonucleotidesOutcomeParaffin EmbeddingPhasePopulationProblem SolvingProteinsRNAReagentResearchResearch PersonnelResolutionSamplingSchemeScientistSmall Business Innovation Research GrantSpecimenSpeedSystemTechnologyTimeTissue SampleTissuesWorkbasebiological systemsdesignimprovedinstrumentmolecular pathologymultidisciplinaryorgan growthpersonalized medicineprecision medicinesingle cell analysissingle-cell RNA sequencingsuccesstooltranscriptometranscriptomics
项目摘要
SBIR Abstract
Single cell biology is a multi-disciplinary study to investigate how large amount of
molecular species interact with each other in single cells and how large population of cells work
together as a complex system. Identifying the difference of gene expression and the spatial
organization of tissues at the single-cell level is essential to decipher tissue heterogeneity,
organ development, and understand the biological systems profoundly, and ultimately benefit
precision and personalized medicine. Currently, single cell RNA sequencing is widely used to
analyze the gene expression patterns of single cells. However, single cell RNA sequencing has
significant limitations, including lack of spatial information, low RNA detection efficiency and low
cell capture efficiency. Existing multiplexed in-situ detection technologies like MERFISH and
seqFISH can overcome these limitations but has long turnaround time. UltraFISH, developed by
Rainbow Diagnostics, significantly improves the turnaround time for a small panel of RNA
detection in-situ. High Capacity UltraFISH is to further advance the multiplex capacity of
UltraFISH so that a large RNA panel such as the whole human transcriptome from a large
region of tissue can be efficiently and quickly profiled in hours. With the successful outcome of
this proposal, High Capacity UltraFISH will revolutionize the single cell analysis field, leading to
breakthroughs in our understanding of biological and disease mechanisms in the near future.
SBIR摘要
单细胞生物学是一个多学科的研究,以调查如何大量的
分子物种在单个细胞中相互作用,以及大细胞群如何工作
作为一个复杂的系统。确定基因表达的差异和空间分布
组织在单细胞水平上的组织对于解释组织异质性是必要的,
器官发育,深刻理解生物系统,最终受益
精准和个性化医疗。目前,单细胞RNA测序被广泛用于
分析单个细胞的基因表达模式。然而,单细胞RNA测序具有
显著的局限性,包括缺乏空间信息,低RNA检测效率和低
细胞捕获效率。现有的多路复用原位检测技术,如MERFISH和
seqFISH可以克服这些限制,但周转时间长。UltraFISH,由
Rainbow Diagnostics显著缩短了一小组RNA的周转时间
现场检测。高容量UltraFISH是为了进一步提高
UltraFISH使一个大的RNA面板,如整个人类转录组,从一个大的
可以在数小时内有效且快速地对组织区域进行轮廓分析。随着成功的结果,
这项建议,高容量UltraFISH将彻底改变单细胞分析领域,导致
在不久的将来,我们对生物学和疾病机制的理解将取得突破。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Zhang其他文献
Structural, elastic, magnetic and electronic properties of 4d perovskite CaTcO3: a DFT+U investigation
4d 钙钛矿 CaTcO3 的结构、弹性、磁性和电子特性:DFT U 研究
- DOI:
10.1088/0953-8984/24/18/185401 - 发表时间:
2012-05 - 期刊:
- 影响因子:0
- 作者:
Wei Zhang;Peiqing Tong - 通讯作者:
Peiqing Tong
Synthesis of Obyanamide, a Marine Cytotoxic Cyclic Depsipeptide
海洋细胞毒性环缩酚肽 Obyanamide 的合成
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:9.1
- 作者:
Ni Song;Wei Zhang;Yingxia Li;Zhongzhen Li - 通讯作者:
Zhongzhen Li
A panel of miRNAs as prognostic indicators for clinical outcome of skin cutaneous melanoma
一组 miRNA 作为皮肤黑色素瘤临床结果的预后指标
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Meng Yang;Wei Zhang;Hongguang Lu;JianminLi - 通讯作者:
JianminLi
Fault tolerant control for uncertain fuzzy systems with actuator failure
执行器故障的不确定模糊系统的容错控制
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1
- 作者:
Tiechao Wang;Wei Zhang;Shaocheng Tong - 通讯作者:
Shaocheng Tong
Wei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Zhang', 18)}}的其他基金
Light triggered materials for on-demand local anesthesia and tissue adhesive dissolution
用于按需局部麻醉和组织粘合剂溶解的光触发材料
- 批准号:
10368292 - 财政年份:2022
- 资助金额:
$ 49.92万 - 项目类别:
Structural Mechanisms of Alphavirus Membrane Fusion
甲病毒膜融合的结构机制
- 批准号:
10444088 - 财政年份:2022
- 资助金额:
$ 49.92万 - 项目类别:
Structural Mechanisms of Alphavirus Membrane Fusion
甲病毒膜融合的结构机制
- 批准号:
10612929 - 财政年份:2022
- 资助金额:
$ 49.92万 - 项目类别:
Light triggered materials for on-demand local anesthesia and tissue adhesive dissolution
用于按需局部麻醉和组织粘合剂溶解的光触发材料
- 批准号:
10613962 - 财政年份:2022
- 资助金额:
$ 49.92万 - 项目类别:
A New Versatile, SERS-based GPCR assay
一种新型多功能、基于 SERS 的 GPCR 检测
- 批准号:
10324451 - 财政年份:2021
- 资助金额:
$ 49.92万 - 项目类别:
Temporal Single Cell RNAseq to Identify Genes and Pathways Affected by 15q11.2 Duplication in Autism iPSC-Derived Differentiating Cortical Neurons
时间单细胞 RNAseq 识别自闭症 iPSC 衍生的分化皮质神经元中受 15q11.2 重复影响的基因和通路
- 批准号:
9200627 - 财政年份:2016
- 资助金额:
$ 49.92万 - 项目类别:
Patient iPSC derived neural synaptic screen for drug discovery
用于药物发现的患者 iPSC 衍生神经突触筛选
- 批准号:
9141432 - 财政年份:2016
- 资助金额:
$ 49.92万 - 项目类别:
The essential role of gamma-secretase in human papillomavirus infection
γ-分泌酶在人乳头瘤病毒感染中的重要作用
- 批准号:
8783864 - 财政年份:2014
- 资助金额:
$ 49.92万 - 项目类别:
Characterization of oncogenic FGFR3-TACC3 fusion gene in glioblastoma
胶质母细胞瘤中致癌 FGFR3-TACC3 融合基因的特征
- 批准号:
8967572 - 财政年份:2013
- 资助金额:
$ 49.92万 - 项目类别:
Characterization of oncogenic FGFR3-TACC3 fusion gene in glioblastoma
胶质母细胞瘤中致癌 FGFR3-TACC3 融合基因的特征
- 批准号:
8647779 - 财政年份:2013
- 资助金额:
$ 49.92万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 49.92万 - 项目类别:
Research Grant