Harnessing Computerized Adaptive Testing, Transdiagnostic Theories of Suicidal Behavior, and Machine Learning to Advance the Emergent Assessment of Suicidal Youth (EASY).
利用计算机自适应测试、自杀行为跨诊断理论和机器学习来推进自杀青少年的紧急评估(EASY)。
基本信息
- 批准号:9910447
- 负责人:
- 金额:$ 72.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-27 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAddressAdolescentAdultAnxietyArea Under CurveAttention deficit hyperactivity disorderAutomobile DrivingBipolar DisorderChildClinicClinicalClinical ResearchClinical assessmentsComputing MethodologiesConduct DisorderDataDevelopmentDiagnosisDiagnosticDimensionsDiseaseElectronic Health RecordEmergency SituationEmergency department visitEvaluationFeeling suicidalFutureGleanHealthcareHospitalizationIndividualInstitutesIntakeInterventionJudgmentLanguageLearningLiteratureMachine LearningMeasuresMental DepressionMental HealthMeta-AnalysisMethodsModernizationNatural Language ProcessingOppositional Defiant DisorderPainParentsParticipantPatient Self-ReportPatientsPennsylvaniaPositioning AttributePositive ValencePsyche structurePsychometricsPsychopathologyReportingResearchResourcesRiskRisk AssessmentRisk FactorsRoleSample SizeSamplingSeveritiesSocial supportSuicideSuicide attemptSymptomsTelephoneTestingTimeYouthadolescent suicideagedbasechild depressioncomputerizedfollow-uphigh riskhigh risk populationimprovedinnovationnovelpredictive testprospectiveprospective testpsychiatric emergencyrecruitsuccesssuicidalsuicidal adolescentsuicidal behaviorsuicidal risktheoriestooltrend
项目摘要
Abstract:
The emergency assessment of acute suicidal risk in adolescents is a daunting clinical challenge because our
current ability to predict suicide attempts is weak, and because the risk for suicide attempts in suicidal
adolescents is high. Nevertheless, there have been no studies that have examined the best approaches to the
prediction of suicidal behavior in suicidal youth presenting to a psychiatric emergency department (PED). To
address this research gap, we propose a study of 1800 youth presented to a regional PED, 1350 of whom
present for evaluation of suicidal risk, in which youth are assessed in the PED, and followed up at 1, 3, and 6
months to determine which youth have made a suicide attempt. We propose 3 complementary approaches to
assessment of suicidal risk. First, in this competitive renewal, we build on our success in developing
computerized adaptive tests for 6 diagnostic groups, plus suicidal risk, during our previous project period.
These self- and parent-reports can be completed in a total of 10-15 minutes. Second, because theory-driven
assessments of suicide risk have strong predictive power in adults, but have never been tested prospectively in
adolescents, we propose to test the predictive power of measures of Shneidman’s psychache (mental pain)
and Joiner’s Interpersonal Theory of Suicide, which posits interactive roles of perceived burdensomeness,
thwarted belonging, and acquired capacity for suicide in driving suicidal risk. Third, we aim to use machine
learning (ML) and natural language processing (NLP) of electronic health records (EHRs) to identify youth at
risk for suicide attempts. We hypothesize that each of these approaches: (1) CATs for suicide risk and for
depression, anxiety, bipolar, ADHD, oppositional defiant, and conduct disorders); (2) theory-derived measures
of suicidal risk; and (3) ML and NLP of EHRs, will each be superior to clinical assessment alone in the
prediction of attempts, and that the combination of the 3 approaches will be more powerful than any one of
these approaches alone. This study is innovative because it is one of the first to use CATs for the prediction of
suicidal risk, in a consistently high risk population, the first prospective test of two leading theories of suicide in
adolescents, the first to use machine learning and natural language processing to identify EHR predictors of
suicide attempts in adolescents, and the first to test a combination of approaches to the identification of
imminent suicidal risk in adolescents in a sufficiently large, high risk sample. The study is of potentially high
impact because it could identify brief, easily disseminated assessment strategies to identify youth at high risk
for suicidal behavior and add to clinicians’ ability to match intensity and type of resources to those at greatest
clinical need. The approaches to be tested in this study could yield assessments that reflect the two
imperatives of emergency mental health care: brevity and accuracy. With better ability to identify who is at risk
for suicidal behavior, we will be in a much stronger position to identify who needs intervention and reverse the
disturbing, decade-long trend of increases in adolescent suicide and suicidal behavior.
摘要:
青少年急性自杀风险的紧急评估是一项艰巨的临床挑战,因为我们的
目前预测自杀企图的能力很弱,而且由于自杀倾向的风险很高,
青少年高。然而,还没有任何研究审查了最好的办法,
在精神病急诊科(PED)就诊的自杀青年中预测自杀行为。到
为了解决这一研究空白,我们建议对1800名青年进行一项研究,提交给一个地区PED,其中1350人,
存在自杀风险评估,其中青年在PED中进行评估,并在1、3和6时进行随访
几个月来确定哪些年轻人有自杀企图。我们提出了三种互补的方法,
评估自杀风险。首先,在这次充满竞争的更新中,我们在发展
在我们之前的项目期间,对6个诊断组进行了计算机化适应性测试,加上自杀风险。
这些自我报告和家长报告可以在10 - 15分钟内完成。第二,因为理论驱动
自杀风险评估在成年人中具有很强的预测能力,但从未在成人中进行过前瞻性测试。
青少年,我们建议测试预测能力的措施,Shneidman的心理疼痛(精神痛苦)
以及乔伊纳的自杀的人际关系理论,该理论假定了感知负担的互动作用,
归属感受挫,以及获得自杀能力,从而导致自杀风险。第三,我们的目标是使用机器
学习(ML)和自然语言处理(NLP)的电子健康记录(EHR),以确定青年在
自杀企图的风险。我们假设这些方法中的每一种:(1)自杀风险和
抑郁、焦虑、双相、ADHD、对立违抗和行为障碍);(2)理论衍生的测量
(3)EHR的ML和NLP,在以下方面均优于单独的临床评估:
预测的尝试,这3种方法的组合将比任何一个更强大,
这些方法本身。这项研究是创新的,因为它是第一个使用CAT预测
自杀风险,在一个一贯的高风险人群中,第一次前瞻性测试的两个主要理论的自杀,
青少年,第一个使用机器学习和自然语言处理来识别EHR预测因子的人。
青少年自杀企图,并首次测试的方法相结合,以确定
在足够大的高风险样本中,青少年的迫在眉睫的自杀风险。这项研究具有潜在的高
影响,因为它可以确定简单、易于传播的评估战略,以确定高风险青年
并增加临床医生的能力,以匹配强度和类型的资源,以那些在最大的
临床需要本研究中测试的方法可以产生反映这两个方面的评估。
紧急精神卫生保健的必要性:简洁和准确。更好地识别谁处于风险中
对于自杀行为,我们将处于更有利的地位,以确定谁需要干预,并扭转
令人不安的是,青少年自杀和自杀行为的增长趋势长达十年。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A. Brent其他文献
Avoidant attachment transmission to offspring in families with a depressed parent
有抑郁父母的家庭中回避型依恋向子女的传递
- DOI:
10.1016/j.jad.2023.01.059 - 发表时间:
2023-03-15 - 期刊:
- 影响因子:4.900
- 作者:
Robert A. Tumasian;Hanga C. Galfalvy;Meghan R. Enslow;David A. Brent;Nadine Melhem;Ainsley K. Burke;J. John Mann;Michael F. Grunebaum - 通讯作者:
Michael F. Grunebaum
4.57 BRIEF BEHAVIORAL THERAPY FOR ANXIETY AND DEPRESSION IN PEDIATRIC PRIMARY CARE: UPTAKE OF INTERVENTION AND COMMUNITY SERVICES BY ETHNIC MINORITY FAMILIES
- DOI:
10.1016/j.jaac.2016.09.252 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Haoyu Lee;Argero Zerr;John F. Dickerson;Kate Conover;Giovanna Porta;David A. Brent;V. Robin Weersing - 通讯作者:
V. Robin Weersing
Deve-se utilizar antidepressivos no tratamento de depressão maior em crianças e adolescentes?
是否可以使用抗抑郁药来治疗儿童和青少年的主要抑郁症?
- DOI:
10.1590/s1516-44462005000200001 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
B. Birmaher;David A. Brent - 通讯作者:
David A. Brent
The psychological autopsy: methodological considerations for the study of adolescent suicide.
- DOI:
10.1111/j.1943-278x.1989.tb00365.x - 发表时间:
1989-03 - 期刊:
- 影响因子:3.2
- 作者:
David A. Brent - 通讯作者:
David A. Brent
Epidemiology of homicide in Allegheny County, Pennsylvania, between 1966-1974 and 1984-1993.
1966 年至 1974 年和 1984 年至 1993 年期间宾夕法尼亚州阿勒格尼县凶杀案的流行病学。
- DOI:
10.1006/pmed.1998.0306 - 发表时间:
1998 - 期刊:
- 影响因子:5.1
- 作者:
Albert T. Smith;Lewis H. Kuller;J. Perper;David A. Brent;Grace Moritz;Joseph P. Costantino - 通讯作者:
Joseph P. Costantino
David A. Brent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A. Brent', 18)}}的其他基金
Imaging the Suicide Mind using Neurosemantic Signatures as Markers of Suicidal Ideation and Behavior
使用神经语义特征作为自杀意念和行为的标记来想象自杀心理
- 批准号:
9901631 - 财政年份:2018
- 资助金额:
$ 72.16万 - 项目类别:
Imaging the Suicide Mind using Neurosemantic Signatures as Markers of Suicidal Ideation and Behavior
使用神经语义特征作为自杀意念和行为的标记来想象自杀心理
- 批准号:
10386788 - 财政年份:2018
- 资助金额:
$ 72.16万 - 项目类别:
The Center for Enhancing Triage and Utilization for Depression and Emergent Suicidality (ETUDES) in Pediatric Primary Care
儿科初级保健中抑郁症和紧急自杀加强分诊和利用中心 (ETUDES)
- 批准号:
9917834 - 财政年份:2018
- 资助金额:
$ 72.16万 - 项目类别:
The Center for Enhancing Treatment and Utilization for Depression and Emergent Suicidality (ETUDES) in Pediatric Primary Care
儿科初级保健中抑郁症和紧急自杀加强治疗和利用中心 (ETUDES)
- 批准号:
10631205 - 财政年份:2018
- 资助金额:
$ 72.16万 - 项目类别:
The Center for Enhancing Treatment and Utilization for Depression and Emergent Suicidality (ETUDES) in Pediatric Primary Care
儿科初级保健中抑郁症和紧急自杀加强治疗和利用中心 (ETUDES)
- 批准号:
10435003 - 财政年份:2018
- 资助金额:
$ 72.16万 - 项目类别:
1/2-Familial Early-Onset Suicide Attempt Biomarkers
1/2-家族性早发自杀企图生物标志物
- 批准号:
9263764 - 财政年份:2015
- 资助金额:
$ 72.16万 - 项目类别:
1/2 Brief Intervention for Suicide Risk Reduction in High Risk Adolescents
1/2 降低高危青少年自杀风险的简短干预措施
- 批准号:
8796231 - 财政年份:2014
- 资助金额:
$ 72.16万 - 项目类别:
Emergency Department Screen for Teens at Risk for Suicide (ED-STARS)
针对有自杀风险的青少年的急诊室筛查 (ED-STARS)
- 批准号:
8755416 - 财政年份:2014
- 资助金额:
$ 72.16万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 72.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 72.16万 - 项目类别:
Standard Grant














{{item.name}}会员




