Dynamic Prediction of Renal Failure Using Longitudinal Prognostic Information among Patients with Chronic Kidney Disease and Kidney Transplant
利用慢性肾病和肾移植患者的纵向预后信息动态预测肾衰竭
基本信息
- 批准号:9912766
- 负责人:
- 金额:$ 31.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-10 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdverse eventAllograftingAreaBiological MarkersCalibrationCaringCharacteristicsChronicChronic DiseaseChronic Kidney FailureChronic Kidney InsufficiencyClinic VisitsClinicalCohort StudiesComputer softwareCounselingDataData SetDatabasesDerivation procedureDisease ProgressionDisease modelElectronic Health RecordEquationEventFailureFutureGuidelinesInterventionInvestigationKidneyKidney DiseasesKidney FailureKidney TransplantationLeadLiteratureLongitudinal cohort studyMeasuresMethodologyMethodsModelingMonitorNephrologyOnline SystemsPatient CarePatientsPhysiciansPopulationPopulations at RiskPsyche structurePublicationsPublishingRecording of previous eventsRecurrenceRenal Replacement TherapyResearchResearch PersonnelResourcesRiskRisk FactorsStatistical AlgorithmTestingTimeTransplant RecipientsUpdateValidationVeteransVisitWisconsinWorkbaseclinical biomarkersclinical careclinical developmentclinical practicecost effectivedisorder riskfollow-upgraft failurehealth administrationkidney allograftmedical specialtiesmodel designmortality risknovelpatient populationpersonalized decisionpersonalized predictionspredictive modelingprognosticrisk prediction modeltime usetooltransplant registryweb-based tool
项目摘要
Project Summary/Abstract
Patients with chronic kidney disease (CKD) and patients receiving kidney transplantation (KTx) are at risk of
kidney/graft failure. Accurate estimation of the time of these adverse clinical events is of great importance for
patient counseling and for the timing of interventions. In clinical practice, these patients are often monitored at
recurrent clinical visits for the progression of the disease. It is desirable to have tools that can make
personalized, real-time prediction of the risk of kidney/graft failure at each clinical visit, adapting to the time-
varying patient conditions. Currently, the published risk prediction equation for CKD and KTx are usually
developed by relating risk factors measured at an earlier time point, such as baseline, to the time of
subsequent adverse event in a regression model. This approach cannot incorporate the longitudinal data from
all the clinical visits, and may generate suboptimal or biased risk estimation and are not suitable for real-time
prediction. Building upon on recent advancement in dynamic prediction (DP) methodology from the statistical
literature, we aim to develop personalized, time-adapted risk prediction equations for CKD and KTx
respectively. The proposed works include developing novel DP methods for kidney/graft failure with adjustment
for the competing risk by death, external validation and re-calibration, and creating software for routine use in
clinical practice. For CKD, the prediction model of kidney failure will be developed from the Chronic Renal
Insufficiency Cohort Study (CRIC) data, and validated using the electronic health records of Veterans Health
Administration. For KTx, the prediction model of graft failure will be developed from the Wisconsin Allograft
Recipient Database (WisARD), and validated using the Scientific Registry of Transplant Recipients (SRTR).
The statistical methodology and software can be used in other medical specialties beyond nephrology to
develop risk prediction models for adverse clinical events from longitudinal data.
项目概要/摘要
慢性肾脏病 (CKD) 患者和接受肾移植 (KTx) 的患者面临以下风险:
肾/移植物衰竭。准确估计这些不良临床事件发生的时间对于
患者咨询和干预时机。在临床实践中,这些患者经常接受监测
定期进行临床检查以了解疾病的进展情况。最好有能够使
每次临床就诊时个性化、实时预测肾/移植失败的风险,适应时间
不同的患者情况。目前,已发表的 CKD 和 KTx 风险预测方程通常为
通过将较早时间点(例如基线)测量的风险因素与发生时间相关联来开发
回归模型中的后续不良事件。该方法无法合并来自的纵向数据
所有临床就诊,可能会产生次优或有偏差的风险估计,并且不适合实时
预言。基于统计动态预测 (DP) 方法的最新进展
文献中,我们的目标是为 CKD 和 KTx 开发个性化、适应时间的风险预测方程
分别。拟议的工作包括开发用于肾/移植物衰竭的新型 DP 方法并进行调整
针对死亡、外部验证和重新校准的竞争风险,并创建日常使用的软件
临床实践。对于CKD,肾衰竭的预测模型将从慢性肾病模型发展而来。
不足队列研究 (CRIC) 数据,并使用 Veterans Health 的电子健康记录进行验证
行政。对于 KTx,移植失败的预测模型将从威斯康星州同种异体移植中开发出来
受者数据库 (WisARD),并使用移植受者科学登记处 (SRTR) 进行验证。
统计方法和软件可用于肾脏病学以外的其他医学专业
根据纵向数据开发不良临床事件的风险预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brad C Astor其他文献
Brad C Astor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brad C Astor', 18)}}的其他基金
Dynamic Prediction of Renal Failure Using Longitudinal Prognostic Information among Patients with Chronic Kidney Disease and Kidney Transplant
利用慢性肾病和肾移植患者的纵向预后信息动态预测肾衰竭
- 批准号:
10369592 - 财政年份:2019
- 资助金额:
$ 31.65万 - 项目类别:
1/14 APOL1 Long-term Kidney Transplantation Outcomes Network (APOLLO) Clinical Center
1/14 APOL1长期肾移植结果网络(APOLLO)临床中心
- 批准号:
10731266 - 财政年份:2017
- 资助金额:
$ 31.65万 - 项目类别:
Longitudinal Study of Predictors and Consequences of Chronic Kidney Disease
慢性肾脏病的预测因素和后果的纵向研究
- 批准号:
8145010 - 财政年份:2010
- 资助金额:
$ 31.65万 - 项目类别:
Longitudinal Study of Predictors and Consequences of Chronic Kidney Disease
慢性肾脏病的预测因素和后果的纵向研究
- 批准号:
7179560 - 财政年份:2007
- 资助金额:
$ 31.65万 - 项目类别:
Longitudinal Study of Predictors and Consequences of Chronic Kidney Disease
慢性肾脏病的预测因素和后果的纵向研究
- 批准号:
7470898 - 财政年份:2007
- 资助金额:
$ 31.65万 - 项目类别:
Longitudinal Study of Predictors and Consequences of Chronic Kidney Disease
慢性肾脏病的预测因素和后果的纵向研究
- 批准号:
7568799 - 财政年份:2007
- 资助金额:
$ 31.65万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 31.65万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 31.65万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 31.65万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 31.65万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 31.65万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 31.65万 - 项目类别: