Emergent cellular functions of GPCRs and myosins
GPCR 和肌球蛋白的新兴细胞功能
基本信息
- 批准号:9919584
- 负责人:
- 金额:$ 33.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressBehaviorBiologicalBiophysicsBiosensorCell divisionCell physiologyCellsComplexComputer ModelsCrowdingDNADiabetes MellitusDiseaseElementsEngineeringEnvironmentEstrogen receptor positiveG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding ProteinsGeometryGoalsHeart failureHot SpotIn VitroIndividualLigandsLinkMalignant NeoplasmsMechanicsMediatingMembrane Protein TrafficMolecularMolecular ConformationMotorMyosin ATPaseNanotechnologyNeurodegenerative DisordersPathway interactionsPatternPharmacologyProteinsRegulationResearchRoleSignal TransductionSpecificityStructureTechniquesTechnologybasecell motilitydrug discoveryinsightmacromoleculemimeticsmolecular dynamicsmolecular scalenovelnovel therapeuticsprotein complexprotein protein interactionrab GTP-Binding Proteinsreceptorscaffoldstem
项目摘要
PROJECT SUMMARY
Cellular processes such as signaling and membrane traffic emerge from an ensemble of dynamic, transient
protein-protein interactions in crowded cellular environments. Aberrant protein-protein interactions are
frequently implicated in debilitating or fatal diseases such as diabetes, neurodegenerative diseases, and
cancer. Established structural and cell biological techniques are mostly limited to dissecting the function of
stable protein complexes, and do not investigate emergent behavior stemming from multiple transient
interactions. To address this challenge, we use DNA nanotechnology scaffolds to pattern macromolecules in
vitro and a novel genetically encoded ER/K linker to probe and modulate protein interactions in live cells.
Together, we leverage these technologies to dissect the molecular mechanisms of multiplicity in G protein-
coupled receptor (GPCR) signaling and biophysical regulation of unconventional myosin function in cells.
We have successfully investigated two distinct aspects of GPCR signaling specificity in cells using biosensors
engineered by linking GPCR and G protein elements with an ER/K linker. First, we hypothesize that ligands
stabilize GPCR conformational sub-states that selectively interface with one or more Gα C-termini, to tune
ligand efficacy and potency for downstream pathways. Our goal is to use a combination of GPCR biosensors
and multi-scale molecular dynamics simulations to define hot-spot residues, structural motifs, and allosteric
pathways in both the GPCR and G protein that drive signaling specificity. Second, our research has advanced
a role for concurrent and sequential interactions between GPCR and effectors on signaling specificity. Our goal
is to combine GPCR biosensors and traditional pharmacology approaches to dissect the synergistic effects of
G proteins on GPCR signaling. Together, our research provides insights into GPCR signaling specificity that
can be leveraged in structure-based drug discovery efforts to identify functionally selective GPCR ligands.
Unconventional myosins are essential in numerous cellular processes including membrane traffic, contractility,
and cell division. Defining the motile function of myosins in cells is challenged by the myriad geometries of both
actin networks and cargo, paired with a diversity of motor-cargo interfaces. We use cargo-mimetic DNA
nanotechnology scaffolds combined with computational modeling to successfully dissect the mechanical
coordination in myosin ensembles. We will use these approaches to gain insight into the biophysical regulation
of myosin function through the motor-cargo interface. We hypothesize that cargo interfaces act as molecular
modules that tune myosin function to match the functional requirements of individual cellular processes. Our
goal is to dissect myosin regulation through interactions with distinct cargo adaptors, Rab GTPases, and cell-
derived cargo complexes. Our research will advance our understanding of emergent myosin function in cells,
while providing a broad theoretical framework for the cargo-mediated regulation of cytoskeletal motors.
项目摘要
细胞过程,如信号和膜交通出现从一个动态的,短暂的
拥挤的细胞环境中的蛋白质-蛋白质相互作用。异常蛋白质-蛋白质相互作用
经常涉及使人衰弱或致命的疾病,如糖尿病、神经退行性疾病,
癌已建立的结构和细胞生物学技术大多限于解剖细胞的功能,
稳定的蛋白质复合物,并没有调查紧急行为源于多个瞬态
交互.为了应对这一挑战,我们使用DNA纳米技术支架来图案化大分子,
体外和一种新的遗传编码的ER/K接头,以探测和调节活细胞中的蛋白质相互作用。
我们一起利用这些技术来剖析G蛋白多样性的分子机制-
偶联受体(GPCR)信号传导和细胞中非常规肌球蛋白功能的生物物理调节。
我们已经成功地研究了两个不同方面的GPCR信号特异性在细胞中使用生物传感器
通过用ER/K接头连接GPCR和G蛋白元件而工程化。首先,我们假设配体
稳定选择性地与一个或多个Gα C-末端相互作用GPCR构象亚状态,
配体功效和下游途径的效力。我们的目标是使用GPCR生物传感器
和多尺度分子动力学模拟,以确定热点残基,结构基序,和变构
GPCR和G蛋白中驱动信号特异性的途径。第二,我们的研究取得了进展,
GPCR和效应子之间的并发和顺序相互作用对信号传导特异性的作用。我们的目标
是将联合收割机GPCR生物传感器和传统药理学方法结合起来,
G蛋白对GPCR信号转导的影响。总之,我们的研究提供了对GPCR信号特异性的见解,
可以在基于结构的药物发现工作中利用,以鉴定功能选择性GPCR配体。
非常规肌球蛋白在许多细胞过程中是必不可少的,包括膜运输,收缩,
和细胞分裂。定义肌球蛋白在细胞中的运动功能受到无数几何形状的挑战,
肌动蛋白网络和货物,以及各种各样的马达-货物接口。我们使用货物模拟DNA
纳米技术支架与计算建模相结合,成功地解剖了机械
肌球蛋白集合体的协调。我们将使用这些方法来深入了解生物物理调节
肌球蛋白的功能。我们假设货物接口作为分子
调节肌球蛋白功能以匹配单个细胞过程的功能要求的模块。我们
目的是通过与不同的货物衔接子,Rab GTP酶和细胞-
衍生的货物复合物。我们的研究将促进我们对细胞中肌球蛋白功能的理解,
同时为细胞骨架马达的货物介导的调节提供了广泛的理论框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sivaraj Sivaramakrishnan其他文献
Sivaraj Sivaramakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sivaraj Sivaramakrishnan', 18)}}的其他基金
Impact of dilated cardiomyopathy mutations on cardiac myosin structure and function
扩张型心肌病突变对心肌肌球蛋白结构和功能的影响
- 批准号:
10595237 - 财政年份:2022
- 资助金额:
$ 33.14万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10425753 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Research Supplement to Promote Diversity in Health-Related Research
促进健康相关研究多样性的研究补充
- 批准号:
10615955 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10427318 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
9907191 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10171616 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Research supplement to promote diversity in Heath-related research
研究补充以促进健康相关研究的多样性
- 批准号:
10221154 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10624275 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10618511 - 财政年份:2020
- 资助金额:
$ 33.14万 - 项目类别:
Emergent cellular functions of GPCRs and myosins
GPCR 和肌球蛋白的新兴细胞功能
- 批准号:
10550541 - 财政年份:2018
- 资助金额:
$ 33.14万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.14万 - 项目类别:
Research Grant