Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
基本信息
- 批准号:10624275
- 负责人:
- 金额:$ 54.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AblationActinsActomyosinAddressAdrenergic AgentsAffectAtomic Force MicroscopyBindingCardiacCardiac MyosinsCollaborationsContractile ProteinsDNADNA Sequence AlterationDefectDevelopmentEquilibriumFilamentGenerationsHeadHeartHeart failureHumanHypertrophic CardiomyopathyKnowledgeLasersLocationMass Spectrum AnalysisMeasuresModelingMolecularMolecular ConformationMolecular StructureMossesMotionMutagenesisMutationMyocardiumMyofibrilsMyosin ATPaseN-terminalNanotubesPerformancePeriodicityPhosphorylationPhysiologicalPositioning AttributePreparationProteinsPumpRegulationRelaxationRoleSarcomeresStructureSudden DeathSurfaceTechniquesTestingThickThick FilamentThin FilamentThinnessTimeTransgenic MiceVertebral columnbeta-Myosinbiophysical techniquescell motilitycitrate carrierflexibilityimprovedin vivomolecular mechanicsmutantmyosin-binding protein Cnanometernanoscalenovelnovel strategiesoperationrecruitresponsesingle moleculespatial relationshipsuperresolution imagingtargeted treatmentyoung adult
项目摘要
Cardiac myosin-binding protein C (cMyBP-C) is a sarcomeric thick filament associated protein that is essential
to normal cardiac structure and function. The importance of cMyBP-C is emphasized by mutations to cMyBP-C
being a leading cause of hypertrophic cardiomyopathy. Despite being a key regulator of cardiac contractility,
the molecular mechanism by which cMyBP-C modulates actomyosin force and motion generation is far from
certain. Although cMyBP-C's N-terminal domains can bind to actin and the myosin head region, it is not known
which of these binding partners is physiologically relevant and whether these binding partner interactions
modulate cardiac contractility by directly affecting actomyosin power generation or indirectly by altering Ca2+-
dependent thin filament activation. With phosphorylation of cMyBP-C's N terminus occurring in response to β-
adrenergic stimulation, phosphorylation may offer a measure of cMyBP-C functional tunability in order to
enhance cardiac contractility. To address these questions, we propose two specific aims. Aim 1 will test the
hypothesis that phosphorylation modulates cMyBP-C's N-terminal domain structure to influence its binding
partner interactions (i.e. thin filament and myosin head region). We will use a novel mass-spectrometry
technique and atomic force microscopy to characterize the molecular mechanics of cMyBP-C's N terminus that
has been structurally altered due to phosphorylation or mutagenesis. The functional impact of these structural
perturbations will be characterized in the context of cardiac myofibrils and native thick filaments to determine if
cMyBP-C operates only where it exist in the thick filament and whether it can sequester cardiac myosin into a
reserve pool of super-relaxed myosin heads. Thus, we will measure the location and time course of
fluorescent-ATP turnover in single cardiac myofibrils and the force generated by native thick filaments in the
laser trap in preparations from transgenic mice expressing phosphorylation and binding partner ablated mutant
cMyBP-C. In Aim 2 we will create DNA-based “designer” thick filament nanotubes to define how the spatial
relationships that normally exist in the thick filament between cMyBP-C and its myosin and actin binding
partners are critical determinants of cMyBP-C's modes of operation. These DNA-nanotubes will allow exquisite
nanometer spatial positioning of expressed cMyBP-C and human β-cardiac myosin on the nanotube surface
relative to each other. By this novel approach we can assign cMyBP C's modulation of actomyosin motility to
binding of the myosin head and/or thin filament, as assessed by both thin filament motility and force generation
using the laser trap. With the knowledge and understanding of cMyBP-C function derived from these collective
studies, targeted therapies directed at cMyBP-C binding partner interactions may be developed to help
modulate and to improve cardiac performance in the failing heart.
心肌肌球蛋白结合蛋白C(cMyBP-C)是一种肌节粗丝相关蛋白,
正常的心脏结构和功能。cMyBP-C的突变强调了cMyBP-C的重要性
是导致肥厚型心肌病的主要原因尽管是心脏收缩力的关键调节器,
cMyBP-C调节肌动球蛋白力和运动产生的分子机制远不是
确定。虽然cMyBP-C的N端结构域可以与肌动蛋白和肌球蛋白头部区域结合,但目前尚不清楚
这些结合伴侣中的哪一个是生理相关的,以及这些结合伴侣相互作用是否
通过直接影响肌动球蛋白发电或间接改变Ca 2 +-
依赖于细丝激活。随着cMyBP-C的N端磷酸化发生在对β-
肾上腺素能刺激,磷酸化可以提供cMyBP-C功能可调性的测量,
增强心脏收缩力。为了解决这些问题,我们提出了两个具体目标。目标1将测试
磷酸化调节cMyBP-C的N-末端结构域结构以影响其结合的假设
伴侣相互作用(即细丝和肌球蛋白头区)。我们将使用一种新的质谱仪
技术和原子力显微镜来表征cMyBP-C的N末端的分子力学,
由于磷酸化或诱变而在结构上发生了改变。这些结构的功能影响
扰动将在心肌肌原纤维和天然粗丝的背景下表征,以确定是否
cMyBP-C仅在其存在于粗肌丝中的地方起作用,以及它是否能将心肌肌球蛋白隔离成
超松弛肌球蛋白头的储备池。我们将以时间和空间为尺度,
单心肌肌原纤维中的荧光-ATP转换和心肌细胞中天然粗丝产生的力
表达磷酸化和结合伴侣消除突变体的转基因小鼠制备物中的激光陷阱
cMyBP-C。在目标2中,我们将创建基于DNA的“设计师”粗丝纳米管,以定义空间
cMyBP-C与其肌球蛋白和肌动蛋白结合之间的关系通常存在于粗丝中
伴侣是cMyBP-C运作模式的关键决定因素。这些DNA纳米管可以让
表达的cMyBP-C和人β-心肌肌球蛋白在纳米管表面的纳米空间定位
相对于彼此。通过这种新的方法,我们可以将cMyBP C对肌动球蛋白运动的调节归因于
肌球蛋白头和/或细丝的结合,通过细丝运动性和力产生评估
使用激光陷阱。随着对cMyBP-C功能的认识和理解,
研究,针对cMyBP-C结合伴侣相互作用的靶向治疗可能有助于
调节和改善衰竭心脏的心脏功能。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cardiac myosin binding protein-C phosphorylation accelerates β-cardiac myosin detachment rate in mouse myocardium
心肌肌球蛋白结合蛋白-C 磷酸化加速小鼠心肌中β-心肌肌球蛋白脱离率
- DOI:10.1152/ajpheart.00673.2020
- 发表时间:2021
- 期刊:
- 影响因子:4.8
- 作者:Tanner, Bertrand C.;Previs, Michael J.;Wang, Yuan;Robbins, Jeffrey;Palmer, Bradley M.
- 通讯作者:Palmer, Bradley M.
Dilated cardiomyopathy mutation in beta-cardiac myosin enhances actin activation of the power stroke and phosphate release.
扩张型心肌病β-心肌肌球蛋白突变增强了动力冲程的肌动蛋白激活和磷酸盐释放。
- DOI:10.1101/2023.11.10.566646
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bodt,SkylarML;Ge,Jinghua;Ma,Wen;Rasicci,DavidV;Desetty,Rohini;McCammon,JAndrew;Yengo,ChristopherM
- 通讯作者:Yengo,ChristopherM
A dynamic Dab2 keeps myosin VI stably on track.
- DOI:10.1016/j.jbc.2021.100640
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Cirilo JA Jr;Yengo CM
- 通讯作者:Yengo CM
Dilated cardiomyopathy mutation E525K in human beta-cardiac myosin stabilizes the interacting-heads motif and super-relaxed state of myosin.
- DOI:10.7554/elife.77415
- 发表时间:2022-11-24
- 期刊:
- 影响因子:7.7
- 作者:Rasicci DV;Tiwari P;Bodt SML;Desetty R;Sadler FR;Sivaramakrishnan S;Craig R;Yengo CM
- 通讯作者:Yengo CM
Nanosurfer assay dissects β-cardiac myosin and cardiac myosin-binding protein C interactions.
- DOI:10.1016/j.bpj.2022.05.013
- 发表时间:2022-06-21
- 期刊:
- 影响因子:3.4
- 作者:Touma, Anja M.;Tang, Wanjian;Rasicci, David, V;Vang, Duha;Rai, Ashim;Previs, Samantha B.;Warshaw, David M.;Yengo, Christopher M.;Sivaramakrishnan, Sivaraj
- 通讯作者:Sivaramakrishnan, Sivaraj
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sivaraj Sivaramakrishnan其他文献
Sivaraj Sivaramakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sivaraj Sivaramakrishnan', 18)}}的其他基金
Impact of dilated cardiomyopathy mutations on cardiac myosin structure and function
扩张型心肌病突变对心肌肌球蛋白结构和功能的影响
- 批准号:
10595237 - 财政年份:2022
- 资助金额:
$ 54.49万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10425753 - 财政年份:2020
- 资助金额:
$ 54.49万 - 项目类别:
Research Supplement to Promote Diversity in Health-Related Research
促进健康相关研究多样性的研究补充
- 批准号:
10615955 - 财政年份:2020
- 资助金额:
$ 54.49万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10427318 - 财政年份:2020
- 资助金额:
$ 54.49万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
9907191 - 财政年份:2020
- 资助金额:
$ 54.49万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10171616 - 财政年份:2020
- 资助金额:
$ 54.49万 - 项目类别:
Research supplement to promote diversity in Heath-related research
研究补充以促进健康相关研究的多样性
- 批准号:
10221154 - 财政年份:2020
- 资助金额:
$ 54.49万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10618511 - 财政年份:2020
- 资助金额:
$ 54.49万 - 项目类别:
Emergent cellular functions of GPCRs and myosins
GPCR 和肌球蛋白的新兴细胞功能
- 批准号:
9919584 - 财政年份:2018
- 资助金额:
$ 54.49万 - 项目类别:
Emergent cellular functions of GPCRs and myosins
GPCR 和肌球蛋白的新兴细胞功能
- 批准号:
10550541 - 财政年份:2018
- 资助金额:
$ 54.49万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 54.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 54.49万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 54.49万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 54.49万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 54.49万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 54.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 54.49万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 54.49万 - 项目类别: