Physical Genomics: From Single-Cell to Evolutionary Dynamics
物理基因组学:从单细胞到进化动力学
基本信息
- 批准号:9923015
- 负责人:
- 金额:$ 72.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-10 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsAntibodiesBacteriaBiological ProcessCarbonCellsChemicalsCommunicable DiseasesDNA sequencingDevelopmentEnvironmentEscherichia coliEvolutionGene ExpressionGene TransferGenesGenetic TranscriptionGenomeGenomicsHealthHorizontal Gene TransferHumanHuman GenomeImmune systemMeasurementMetabolicMethodsMicrobeMicroscopyModelingMolecular ConformationOrganismOsmotic ShocksOutputPaste substancePhysical environmentPhysiologicalProcessProtein AnalysisRegulationResearchResolutionSequence AnalysisSourceStructureTimeVirulenceVirus DiseasesWorkbaseemerging antibiotic resistancegenome sequencingmicrobialmicroorganismpathogenphysical modelphysical processpreferenceprogramspromoterprotein structurepublic health relevanceresistance generesponsesynthetic biology
项目摘要
DESCRIPTION (provided by applicant): The advent of DNA sequencing has shown genomes to be one of the most revealing windows onto biological function and evolution at our disposal. For example, in the microbial world, genome sequencing has taught us that lateral gene transfer is a key process responsible for the emergence of virulence and antibiotic resistance, an important and increasing concern in the context of infectious diseases. In response to the enormous diversity of infectious pathogens, in the cells of the immune system, the human genome undergoes a cut-and-paste process that leads to a huge array of unique antibodies. Cells respond to changes in the environment on much faster time scales as well. Different genes are turned on at different times and in different places in response to instantaneous changes in their chemical and physical environment. These regulatory decisions range from the expression of metabolic preferences about which carbon source in an environment to exploit to choices critical to human health, such as whether cells will enter a state of unchecked proliferation or express antibiotic resistance genes. Yet, there remains much that we don't understand about how genomes work. Even in the best understood of organisms such as the bacterium E. coli, we remain completely ignorant of how half of its genes are regulated. Just as protein structures give only a single structural snapshot from a huge array of different conformations, genomes are dynamic too. Further, in analogy with proteins, analysis of sequence is almost never enough to tell us how genes are regulated and exploited in their physiological setting. The research proposed here focuses on three challenging and important aspects of genome dynamics: (i) The use of physical models and single-cell microscopy to develop a mechanistic view of the rules for how genes are transferred between different organisms, a process critical not only to the long-term evolution of microorganisms, but also to the short-term emergence of infectious diseases. (ii) The development of sequencing-based and modeling methods that permit us to determine not only how genes for which we have no regulatory information are regulated, but also to quantitatively characterize their input-output functions. (iii) Quantitative single-cell studies that relate these transcriptional input-output functions to the physiological response of cells to various environmental insults such as antibiotics or osmotic shock. Each of these efforts aims to provide a sequence-level understanding of how genes are transferred, regulated and expressed to carry out physiological functions.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROB PHILLIPS其他文献
ROB PHILLIPS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROB PHILLIPS', 18)}}的其他基金
The Principles of Regulatory, Conformational and Evolutionary Adaptation
调节、构象和进化适应的原则
- 批准号:
10457808 - 财政年份:2016
- 资助金额:
$ 72.33万 - 项目类别:
The Principles of Regulatory, Conformational and Evolutionary Adaptation
调节、构象和进化适应的原理
- 批准号:
10683092 - 财政年份:2016
- 资助金额:
$ 72.33万 - 项目类别:
Single-Cell Analysis of Virus-Host Interactions
病毒-宿主相互作用的单细胞分析
- 批准号:
8507757 - 财政年份:2011
- 资助金额:
$ 72.33万 - 项目类别:
Single-Cell Analysis of Virus-Host Interactions
病毒-宿主相互作用的单细胞分析
- 批准号:
8175535 - 财政年份:2011
- 资助金额:
$ 72.33万 - 项目类别:
Single-Cell Analysis of Virus-Host Interactions
病毒-宿主相互作用的单细胞分析
- 批准号:
8306899 - 财政年份:2011
- 资助金额:
$ 72.33万 - 项目类别:
Single-Cell Analysis of Virus-Host Interactions
病毒-宿主相互作用的单细胞分析
- 批准号:
8711495 - 财政年份:2011
- 资助金额:
$ 72.33万 - 项目类别:
Information Encoded in the Sequence-Dependent Mechanics of DNA
DNA 序列相关机制中编码的信息
- 批准号:
7820265 - 财政年份:2009
- 资助金额:
$ 72.33万 - 项目类别:
Single-Molecule and Single-Cell Analysis of Transcription Factor-DNA Complexes
转录因子-DNA 复合物的单分子和单细胞分析
- 批准号:
8843459 - 财政年份:2009
- 资助金额:
$ 72.33万 - 项目类别:
Single-Molecule and Single-Cell Analysis of Transcription Factor-DNA Complexes
转录因子-DNA 复合物的单分子和单细胞分析
- 批准号:
8215827 - 财政年份:2009
- 资助金额:
$ 72.33万 - 项目类别:
Single-Molecule and Single-Cell Analysis of Transcription Factor-DNA Complexes
转录因子-DNA 复合物的单分子和单细胞分析
- 批准号:
7771677 - 财政年份:2009
- 资助金额:
$ 72.33万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 72.33万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 72.33万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 72.33万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 72.33万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 72.33万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 72.33万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 72.33万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 72.33万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 72.33万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 72.33万 - 项目类别:
Studentship














{{item.name}}会员




