ECM Shrink Wrapped Human Cardiomyocytes and Endothelial Cells to Accelerate Myocardial Regeneration

ECM 收缩包裹人心肌细胞和内皮细胞以加速心肌再生

基本信息

  • 批准号:
    9924688
  • 负责人:
  • 金额:
    $ 17.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Myocardial infarction (MI) is a major cause of cardiac-related death in the US and those fortunate to survive the acute event suffer from chronic risk of arrhythmia, stroke and congestive heart failure. Repairing the heart is difficult because cardiomyocytes are post-mitotic and cannot proliferate in order to regenerate damaged tissue. Recent work has demonstrated that human cardiomyocytes can be derived from embryonic stem (ES) and induced pluripotent stem (iPS) cells, as well as transdifferentiated from other cells. However, survival and functional integration of these cardiomyocytes into stereotypical vascularized myocardium is still a major and unresolved challenge. This proposal describes a breakthrough towards therapeutic cell delivery by wrapping each cell in a nanostructured extracellular matrix (ECM) scaffold tailor made for enhancing survival, myogenesis and integration into infarcted myocardium. The key innovation in our approach is the ability to engineer 50-100 nm thick sheets of ECM with defined protein composition and shape and wrap this around individual cells or small cell ensembles. This is an improvement over current encapsulation technology because we can build the ECM around cardiomyocytes and endothelial cells to mimic the ECM that naturally surrounds these cells in the healthy heart. This is critical, because the ECM is a primary regulator of integrin binding, growth factor sequestration and mechanotransduction. Our preliminary results demonstrate that our novel surface-initiated assembly technique can build an ECM nano-scaffold from a range of matrix proteins and shrink wrap cardiomyocytes and endothelials cells. Further, we have shown using corneal endothelial cells that we can effectively delivery cells in vivo. This proposal will build upon these results by achieving three primary aims. One, develop the ECM nano-scaffold technology to shrink wrap cardiomyocytes and endothelial cells in engineered layers of fibronectin, laminin and collagen type IV that match the matrix in the native myocardium. Two, interrogate the role of ECM nano-scaffold composition, size and cell population on maximizing muscle formation, pre-vascularization and contractility in 3D tissue. Looking forward, achieving these aims will result in an injectable cell delivery technology that has enhanced capability to promote the retention, survival, integration, myogenesis and vascularization of cardiomyocytes and endothelial cells into the injured heart. This would have profound consequences by leading towards clinically-relevant therapeutic strategies to decrease morbidity and mortality in MI and cardiovascular disease patients
在美国,心肌梗死(MI)是导致心脏相关死亡的主要原因

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns.
  • DOI:
    10.1038/s41598-021-87550-y
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Batalov I;Jallerat Q;Kim S;Bliley J;Feinberg AW
  • 通讯作者:
    Feinberg AW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Walter Feinberg其他文献

Adam Walter Feinberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Walter Feinberg', 18)}}的其他基金

Bioprinted Human Ventricles for In Vitro Modeling of Cardiac Arrhythmias
用于心律失常体外建模的生物打印人心室
  • 批准号:
    10325795
  • 财政年份:
    2021
  • 资助金额:
    $ 17.67万
  • 项目类别:
Advanced manufacturing of a bioprosthetic collagen heart valve
生物假体胶原蛋白心脏瓣膜的先进制造
  • 批准号:
    10258425
  • 财政年份:
    2021
  • 资助金额:
    $ 17.67万
  • 项目类别:
Human Myocardium Engineered Using Developmentally-Inspired Protein Scaffolds
使用受发育启发的蛋白质支架设计人类心肌
  • 批准号:
    8355924
  • 财政年份:
    2012
  • 资助金额:
    $ 17.67万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 17.67万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 17.67万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 17.67万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 17.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 17.67万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 17.67万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 17.67万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 17.67万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 17.67万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 17.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了