Advanced manufacturing of a bioprosthetic collagen heart valve
生物假体胶原蛋白心脏瓣膜的先进制造
基本信息
- 批准号:10258425
- 负责人:
- 金额:$ 25.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAnatomyAnticoagulationArchitectureArtificial HeartBiologicalBiomimeticsBioprosthesis deviceBloodCardiacCardiac Surgery proceduresCardiovascular DiseasesCattleCause of DeathChemicalsClinical TrialsCollaborationsCollagenCollagen FiberCollagen Type IComplexCongenital AbnormalityCustomDataDevicesDisadvantagedEngineeringEuropeExtracellular MatrixFailureFamily suidaeFatigueFiberFilamentFoundationsFundingHarvestHealthcare SystemsHeart ValvesHumanHydrogelsImplantIn VitroIntellectual PropertyJapanLettersLifeMechanicsMetalsMethodsModulusMuscleOperative Surgical ProceduresPathologyPatientsPerformancePeriodicityPhasePhysiologicalPolymersPrintingProceduresProcessPtosisRadialResearchScienceShapesSmall Business Innovation Research GrantSourceStressStructureSystemTechnologyTestingThickTimeUniversitiesVentricularWorkaortic valveaortic valve replacementbasebioprintingcalcificationcommercializationcostcrosslinkdesignheart valve replacementhemocompatibilityimplantationimprovedin vivoinnovationmanufacturing scale-upmechanical propertiesminimally invasivepatient populationpediatric patientsphase 1 testingpre-clinicalpressurepyrolytic carbonrepairedresponsesheep modelsuccesssurgical risk
项目摘要
Cardiovascular disease is a leading cause of death in the US, Europe and Japan and is comprised of a wide
range of pathologies. One of the most common procedures is heart valve replacement and is required when the
valve fails due to regurgitation or is unable to open fully during the cardiac cycle. Causes include congenital
defects, calcification and prolapse, but regardless of origin there are limited options to repair valves and surgical
treatments are focused primarily on replacement. It is estimated that each year more than 150,000 patients
receive heart valve replacements at a mean cost of ~$200,000 per procedure, corresponding to >$30B cost to
the healthcare system. The heart valve market has continued to grow over the past decade due to advances in
surgical and minimally-invasive technologies associated with heart valve placement. However, current valves
represent some compromise in fit, biological performance, durability and surgical procedure, with unique
advantages and disadvantages associated with current mechanical and bioprosthetic heart valves. In this
proposal our objective is to develop a new bioprosthetic heart valve using advanced manufacturing approaches
that has the durability of mechanical valves, the non-thrombogenicity of biologic valves, the soft deformability for
minimally-invasive transcatheter delivery, and the ability to custom fit the anatomy of any patient. To do this
FluidForm, Inc in collaboration with Carnegie Mellon University will develop a new freeform reversible embedding
of suspended hydrogels (FRESH) 3D printed heart valve using collagen type I that recreates the laminar and
anisotropic extracellular matrix (ECM) architecture in native valves. Our preliminary data shows that FRESH 3D
printing can be used to manufacture functional tri-leaflet heart valves entirely from collagen and can support
physiologic flow rates and pressure for short periods of time. Here we will improve valve performance by
recreating the collagen fiber arrangement and mechanical properties in native valve leaflets via two research
aims. First, we will demonstrate that FRESH 3D printing of collagen type I can recreate the collagen fiber
architecture in the different layers of the native aortic valve leaflets with <10% difference in mean orientation
angle. Second, we will prove that FRESH 3D printed collagen valve leaflets can be engineered to have radial
and circumferential elastic modulus, non-linear stress-strain response, creep, and fatigue life within 75% of native
aortic valve leaflets. Phase I proof-of-concept success will provide a strong foundation for a Phase II SBIR project
that will validate the complete FRESH printed, bioprosthetic aortic valve in an in vitro flow system that simulates
human pressure and flow rate and in a pre-clinical ovine model to assess hemocompatibility and biological
response.
在美国、欧洲和日本,心血管疾病是导致死亡的主要原因之一,而且涉及范围广泛
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Walter Feinberg其他文献
Adam Walter Feinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Walter Feinberg', 18)}}的其他基金
Bioprinted Human Ventricles for In Vitro Modeling of Cardiac Arrhythmias
用于心律失常体外建模的生物打印人心室
- 批准号:
10325795 - 财政年份:2021
- 资助金额:
$ 25.54万 - 项目类别:
ECM Shrink Wrapped Human Cardiomyocytes and Endothelial Cells to Accelerate Myocardial Regeneration
ECM 收缩包裹人心肌细胞和内皮细胞以加速心肌再生
- 批准号:
9924688 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Human Myocardium Engineered Using Developmentally-Inspired Protein Scaffolds
使用受发育启发的蛋白质支架设计人类心肌
- 批准号:
8355924 - 财政年份:2012
- 资助金额:
$ 25.54万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 25.54万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 25.54万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 25.54万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant