Bioprinted Human Ventricles for In Vitro Modeling of Cardiac Arrhythmias
用于心律失常体外建模的生物打印人心室
基本信息
- 批准号:10325795
- 负责人:
- 金额:$ 22.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAction PotentialsAdoptionAdultAgeAnimal ModelArchitectureArrhythmiaBackBiologicalBiomechanicsBiomedical EngineeringCalciumCanis familiarisCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCardiotoxicityCardiovascular DiseasesCell LineCellsCollaborationsCollagenComplexContractile ProteinsDangerousnessDataDevelopmentDiseaseDisease modelDoseDrug PrescriptionsDrug TargetingElectrophysiology (science)EvaluationExtracellular MatrixFamily suidaeFibrosisFoundationsGenetic Predisposition to DiseaseGeometryHeartHeart InjuriesHeart VentricleHumanHydrogelsIn VitroIndustryIndustry StandardInfarctionIntellectual PropertyIon ChannelIschemiaLeftLeft ventricular structureLettersLinkModelingMutationMyocardiumOpticsOrganOrganoidsOryctolagus cuniculusOutcomePatientsPatternPerformancePharmaceutical PreparationsPhasePre-Clinical ModelProcessProductivityPropertyResearchRiskRisk FactorsSafetyScienceSmall Business Innovation Research GrantStructureSystemTechnologyTestingTissue EngineeringTissuesTranslatingUniversitiesVentricularWorkbasebioprintingcommercializationcostdifferential expressiondrug developmentdrug sensitivitydrug testingheart rhythmimaging platformimprovedin vitro Modelinduced pluripotent stem cellinnovationmanufacturing scale-upnext generationphase 1 testingresearch and developmentresponsesexsuccesssudden cardiac deaththree-dimensional modelingtooltreatment durationvoltage
项目摘要
Over the past 40 years nearly 45% of drugs withdrawn from the market have been due to cardiac safety
concerns, contributing to the ever increasing cost and declining productivity of the biopharma R&D process.
While the mechanisms of drug-induced cardiotoxicity vary widely by drug and target, the most common and
dangerous manifestation is cardiac arrhythmia and sudden cardiac death. The biopharma industry has heavily
invested in new tools that are sensitive to cardiotoxic effects, however, current preclinical models are a
compromise in the structural, compositional, and functional complexity necessary to recapitulate and be
predictive of human cardiac electrophysiology. Further, understanding how patient-specific risk factors including
genetic predisposition, age, sex, and underlying cardiovascular disease (e.g. fibrosis, ischemia, infarction)
contribute to a drug-induced proarrhythmogenic state requires the development of entirely new in vitro models
of impulse conduction disorders. In this proposal our objective is to develop a new bioengineered human ventricle
as a predictive in vitro model for identifying drug-induced proarrhythmogenic risks in the human heart. To
overcome current limitations, FluidForm, Inc in collaboration with Carnegie Mellon University will develop a new
freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinted left ventricle model that
recreates the laminar architecture of ventricular myocardium and has tailored structure and composition to mimic
proarrhythmogenic disease states. Our preliminary data establishes that we can build a functional ventricle with
circumferential myofiber alignment, anisotropic action potential propagation, distinct arrhythmia features
including rotors and multiple propagating waves, and complex biomechanical responses including wall
thickening. Here we will improve ventricle performance for use in the biopharma R&D process via two research
aims. First, we will establish baseline sensitivity of the FRESH 3D bioprinted human ventricle model to known
proarrhythmogenic compounds and generate industry-standard does-response curves. Second, we will
demonstrate tunable sensitivity by controlling cardiomyocyte and collagen architecture to mimic fibrotic disease
and incorporate iPS-derived human cardiomyocytes with known conduction mutations. This will allow us to
achieve patient-specific disease models that show dose-response curves that are left-shifted for
proarrhythmogenic compounds. Phase I proof-of-concept success will provide a strong foundation for a Phase
II SBIR project that will validate the complete FRESH 3D printed ventricle model in an in vitro high-content
imaging platform to assess electrophysiology and biological response, and provide a critically needed, industry-
leading capability to accurately predict human arrhythmias in drug development.
在过去的40年中
担心,导致生物制药研发过程的成本不断提高和生产率下降。
而药物诱导的心脏毒性的机制因药物和靶标而差异很大,但最常见的是
危险的表现是心律不齐和心脏猝死。生物制药行业已经大大
但是,投资于对心脏毒性影响敏感的新工具,但是,当前的临床前模型是
在概括和BE所必需的结构,组成和功能复杂性中妥协
预测人类心脏电生理学。此外,了解特定于患者的风险因素包括
遗传易感性,年龄,性别和潜在的心血管疾病(例如纤维化,缺血,梗死)
有助于药物诱导的促动脉鼻状状态需要发展全新的体外模型
冲动传导障碍。在此提案中,我们的目标是开发一个新的生物工程性人心室
作为一种预测性体外模型,用于鉴定人心脏中药物诱导的肾上腺心律运动风险。到
克服当前限制,Fluidform,Inc与卡内基·梅隆大学合作将开发一个新的
悬浮水凝胶(新鲜)3D生物打印的左心室模型的自由形式可逆嵌入
重新创建心肌心肌的层状结构,并具有量身定制的结构和组成以模仿
心律失常疾病状态。我们的初步数据确定我们可以与
周向肌纤维对齐,各向异性动作电势传播,独特的心律失常特征
包括转子和多个传播波,以及复杂的生物力学反应,包括墙
增厚。在这里,我们将通过两项研究来改善在生物制药研发过程中使用的心室性能
目标。首先,我们将建立新鲜3D生物打印的人心室模型对已知的基线灵敏度
心律不足的化合物并产生行业标准的响应曲线。第二,我们会的
通过控制心肌细胞和胶原蛋白结构对模拟纤维化疾病来证明可调敏感性
并结合具有已知传导突变的IPS衍生的人类心肌细胞。这将使我们能够
实现患者特异性疾病模型,这些模型显示出剂量反应曲线,这些曲线是左移的
促动脉症化合物。第一阶段概念证明的成功将为一个阶段提供良好的基础
II SBIR项目将在体外高含量中验证完整的新鲜3D印刷心室模型
成像平台评估电生理学和生物学反应,并提供迫切需要的行业
领导能力可以准确预测药物发育中人类心律不齐。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FRESH™ 3D bioprinted cardiac tissue, a bioengineered platform for in vitro pharmacology.
- DOI:10.1063/5.0163363
- 发表时间:2023-12
- 期刊:
- 影响因子:6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Walter Feinberg其他文献
Adam Walter Feinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Walter Feinberg', 18)}}的其他基金
Advanced manufacturing of a bioprosthetic collagen heart valve
生物假体胶原蛋白心脏瓣膜的先进制造
- 批准号:
10258425 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
ECM Shrink Wrapped Human Cardiomyocytes and Endothelial Cells to Accelerate Myocardial Regeneration
ECM 收缩包裹人心肌细胞和内皮细胞以加速心肌再生
- 批准号:
9924688 - 财政年份:2019
- 资助金额:
$ 22.86万 - 项目类别:
Human Myocardium Engineered Using Developmentally-Inspired Protein Scaffolds
使用受发育启发的蛋白质支架设计人类心肌
- 批准号:
8355924 - 财政年份:2012
- 资助金额:
$ 22.86万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ONIX: A Neural Acquisition System for Unencumbered, Closed-Loop Recordings in Small, Freely Moving Animals
ONIX:一种神经采集系统,用于对小型、自由移动的动物进行无阻碍、闭环记录
- 批准号:
10482182 - 财政年份:2022
- 资助金额:
$ 22.86万 - 项目类别:
Open-source computational modeling of Spinal Cord Stimulation (SCS) to enhance dissemination of 1R01NS112996
脊髓刺激 (SCS) 的开源计算模型可增强 1R01NS112996 的传播
- 批准号:
10413556 - 财政年份:2021
- 资助金额:
$ 22.86万 - 项目类别:
Helping to End Addiction Long-term (HEAL): 3D Bioprinted Tissue Models
帮助戒除长期成瘾 (HEAL):3D 生物打印组织模型
- 批准号:
10469257 - 财政年份:
- 资助金额:
$ 22.86万 - 项目类别:
Helping to End Addiction Long-term (HEAL): 3D Bioprinted Tissue Models
帮助戒除长期成瘾 (HEAL):3D 生物打印组织模型
- 批准号:
10907365 - 财政年份:
- 资助金额:
$ 22.86万 - 项目类别: