Bioprinted Human Ventricles for In Vitro Modeling of Cardiac Arrhythmias

用于心律失常体外建模的生物打印人心室

基本信息

  • 批准号:
    10325795
  • 负责人:
  • 金额:
    $ 22.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Over the past 40 years nearly 45% of drugs withdrawn from the market have been due to cardiac safety concerns, contributing to the ever increasing cost and declining productivity of the biopharma R&D process. While the mechanisms of drug-induced cardiotoxicity vary widely by drug and target, the most common and dangerous manifestation is cardiac arrhythmia and sudden cardiac death. The biopharma industry has heavily invested in new tools that are sensitive to cardiotoxic effects, however, current preclinical models are a compromise in the structural, compositional, and functional complexity necessary to recapitulate and be predictive of human cardiac electrophysiology. Further, understanding how patient-specific risk factors including genetic predisposition, age, sex, and underlying cardiovascular disease (e.g. fibrosis, ischemia, infarction) contribute to a drug-induced proarrhythmogenic state requires the development of entirely new in vitro models of impulse conduction disorders. In this proposal our objective is to develop a new bioengineered human ventricle as a predictive in vitro model for identifying drug-induced proarrhythmogenic risks in the human heart. To overcome current limitations, FluidForm, Inc in collaboration with Carnegie Mellon University will develop a new freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinted left ventricle model that recreates the laminar architecture of ventricular myocardium and has tailored structure and composition to mimic proarrhythmogenic disease states. Our preliminary data establishes that we can build a functional ventricle with circumferential myofiber alignment, anisotropic action potential propagation, distinct arrhythmia features including rotors and multiple propagating waves, and complex biomechanical responses including wall thickening. Here we will improve ventricle performance for use in the biopharma R&D process via two research aims. First, we will establish baseline sensitivity of the FRESH 3D bioprinted human ventricle model to known proarrhythmogenic compounds and generate industry-standard does-response curves. Second, we will demonstrate tunable sensitivity by controlling cardiomyocyte and collagen architecture to mimic fibrotic disease and incorporate iPS-derived human cardiomyocytes with known conduction mutations. This will allow us to achieve patient-specific disease models that show dose-response curves that are left-shifted for proarrhythmogenic compounds. Phase I proof-of-concept success will provide a strong foundation for a Phase II SBIR project that will validate the complete FRESH 3D printed ventricle model in an in vitro high-content imaging platform to assess electrophysiology and biological response, and provide a critically needed, industry- leading capability to accurately predict human arrhythmias in drug development.
在过去的40年里,近45%的药物退出市场是由于心脏安全性 这些问题导致生物制药研发过程的成本不断增加,生产率不断下降。 虽然药物诱导的心脏毒性的机制因药物和靶点而异,但最常见和最常见的是心脏毒性。 危险表现为心律失常和心源性猝死。生物制药行业已经严重 投资于对心脏毒性作用敏感的新工具,然而,目前的临床前模型是一种 在结构、组成和功能复杂性方面的妥协, 预测人类心脏电生理学。此外,了解患者特定的风险因素,包括 遗传易感性、年龄、性别和基础心血管疾病(例如纤维化、缺血、梗死) 有助于药物诱导的促孕激素状态需要开发全新的体外模型 冲动传导障碍在这项计划中,我们的目标是开发一种新的生物工程人类心室 作为一个预测性的体外模型,用于确定药物诱导的促心脏病的风险。到 克服目前的局限性,FluidForm公司与卡内基梅隆大学合作,将开发一种新的 悬浮水凝胶的自由形式可逆包埋(FRESH)3D生物打印左心室模型, 重建了心室肌的层状结构,并具有定制的结构和组成, 促孕性疾病状态。我们的初步数据表明,我们可以建立一个功能性心室, 环周肌纤维排列,各向异性动作电位传播,明显的心律失常特征 包括转子和多个传播波,以及复杂的生物力学响应,包括壁 增厚在这里,我们将通过两项研究来改善心室性能,以用于生物制药研发过程 目标。首先,我们将建立FRESH 3D生物打印的人类心室模型对已知的心室模型的基线灵敏度。 产生促孕激素化合物并产生工业标准剂量-反应曲线。二是 通过控制心肌细胞和胶原结构模拟纤维化疾病, 并掺入具有已知传导突变的iPS衍生的人心肌细胞。这将使我们能够 实现患者特异性疾病模型,其显示左移的剂量-反应曲线, 促孕化合物第一阶段概念验证的成功将为第二阶段的成功奠定坚实的基础。 II SBIR项目,将在体外高内容物环境中验证完整的FRESH 3D打印心室模型 成像平台,以评估电生理学和生物反应,并提供急需的,行业- 在药物开发中准确预测人类心律失常的领先能力。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FRESH™ 3D bioprinted cardiac tissue, a bioengineered platform for in vitro pharmacology.
  • DOI:
    10.1063/5.0163363
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Walter Feinberg其他文献

Adam Walter Feinberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Walter Feinberg', 18)}}的其他基金

Advanced manufacturing of a bioprosthetic collagen heart valve
生物假体胶原蛋白心脏瓣膜的先进制造
  • 批准号:
    10258425
  • 财政年份:
    2021
  • 资助金额:
    $ 22.86万
  • 项目类别:
ECM Shrink Wrapped Human Cardiomyocytes and Endothelial Cells to Accelerate Myocardial Regeneration
ECM 收缩包裹人心肌细胞和内皮细胞以加速心肌再生
  • 批准号:
    9924688
  • 财政年份:
    2019
  • 资助金额:
    $ 22.86万
  • 项目类别:
Human Myocardium Engineered Using Developmentally-Inspired Protein Scaffolds
使用受发育启发的蛋白质支架设计人类心肌
  • 批准号:
    8355924
  • 财政年份:
    2012
  • 资助金额:
    $ 22.86万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 22.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 22.86万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 22.86万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 22.86万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 22.86万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 22.86万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 22.86万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 22.86万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 22.86万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 22.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了