SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
基本信息
- 批准号:9928205
- 负责人:
- 金额:$ 25.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBehavioralCaringClinicalClinical DataDataData CollectionData SetDecision MakingDiagnostic testsEffectivenessEmotionalEtiologyFamilyFemaleFutureGenesGeneticGeographyHospitalsIndividualInfantInstructionInterventionJournalsKnowledgeLearningLiteratureMachine LearningMedicalMedical GeneticsMethodsModelingMothersNational Institute of Child Health and Human DevelopmentNew YorkNulliparityPaperPatient SchedulesPatientsPatternPhenotypePopulation HeterogeneityPregnancyPregnancy HistoriesPremature BirthPresbyterian ChurchProspective cohort studyPublic HealthRecording of previous eventsResearchRiskRisk FactorsSeriesSocial ImpactsSocietiesTestingTimeUnited StatesUnited States National Institutes of HealthVariantVisitWomanWorkbaseclinical practicedesigndisabilitygenetic associationgenetic informationgenome wide association studygraduate studenthigh riskimprovedinsightintervention costminority studentmortalitymultidisciplinaryneonatenon-geneticphenotypic datapredictive modelingracial and ethnicrecruitsymposiumundergraduate research
项目摘要
Preterm Birth (PTB) is a major long-lasting public health problem being the leading cause of mortality and
long-term disabilities among neonates, with heavy emotional and financial consequences to families and
society. Prediction of PTB risk has been an exceedingly challenging problem, in particular for first time
mothers (nulliparous women) due to the lack of prior pregnancy history. Most studies to date have
examined individual risk factors, genetic, environmental, or behavioral, through univariate analyses of their
association with PTB, including GWAS identifying modest contribution of common variants across six gene
regions. The challenge of improving PTB prediction is due to the inherent complexity of its multifactorial
etiology and the lack of approaches capable of integrating and interpreting large multidisciplinary data. Our
previous work [NSF Eager 1454855, 1454814] developed predictive models for PTB based on non-genetic
maternal attributes. An important question is to know whether factors other than history of PTB can be used
to identify a nullipara patient at risk. We plan on devising longitudinal risk prediction methods for PTB that
integrate every piece of available data. We will address three important gaps in current literature as our
three project objectives: a focused study of nulliparous women and their risk for PTB; combining genetic
factors with other clinical factors to determine risk ; and using longitudinal data and models to optimize
scheduling of patient visits, testing and treatment. We will focus on a recently released NIH-NICHD dataset
called nuMoM2b, which is a prospective cohort study of a racially/ethnically/geographically diverse
population of10 ,038 nulliparous women with singleton gestation .
Our aims are as follows: (1) Longitudinal Preterm Birth Prediction ; (2) Combining clinical and genetic
features for risk prediction ; (3) Assessing the effectiveness of the methods in clinical practice.
RELEVANCE (See instructions) .
Over 26 billion dollars are spent annually on the delivery and care of the 12% of infants who are born
preterm in the United States. A crucial challenge is to identify women who are at the highest risk for early
preterm birth and to develop interventions. Equally important, would be the ability to identify women at the
lowest risk to avoid unnecessary and costly interventions. Our project has the potential to advance
knowledge about this long-lasting public health problem.
早产(PTB)是一个长期存在的重大公共卫生问题,是导致死亡和死亡的主要原因
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander M Friedman其他文献
Is it time for a large trial to evaluate aspirin for obstetric venous thromboembolism prophylaxis?
是时候进行一项大型试验来评估阿司匹林在产科静脉血栓栓塞预防中的作用了吗?
- DOI:
10.1016/s2352-3026(24)00374-0 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:17.700
- 作者:
Alexander M Friedman - 通讯作者:
Alexander M Friedman
Antenatal pyelonephritis hospitalisation trends, risk factors and associated adverse outcomes: A retrospective cohort study.
产前肾盂肾炎住院趋势、危险因素和相关不良结果:一项回顾性队列研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christy Gandhi;Timothy Wen;Lilly Y. Liu;Whitney A. Booker;M. D'alton;Alexander M Friedman - 通讯作者:
Alexander M Friedman
Cesarean hysterectomy for placenta accreta spectrum: Surgeon specialty-specific assessment.
侵入性胎盘的剖宫产子宫切除术:外科医生专业评估。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.7
- 作者:
Koji Matsuo;Yongmei Huang;Shinya Matsuzaki;A. Vallejo;J. Ouzounian;Lynda D. Roman;F. Khoury‐Collado;Alexander M Friedman;J. Wright - 通讯作者:
J. Wright
State-Level Indicators of Structural Racism and Severe Adverse Maternal Outcomes During Childbirth
结构性种族主义和分娩期间严重不良孕产妇结局的州级指标
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
J. Guglielminotti;G. Samari;Alexander M Friedman;R. Landau;Guohua Li - 通讯作者:
Guohua Li
Peripartum cardiomyopathy delivery hospitalization and postpartum readmission trends, risk factors, and outcomes.
围产期心肌病分娩住院和产后再入院趋势、危险因素和结果。
- DOI:
10.1016/j.preghy.2023.11.004 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hooman Azad;Timothy Wen;Natalie A. Bello;Whitney A. Booker;S. Purisch;M. D'alton;Alexander M Friedman - 通讯作者:
Alexander M Friedman
Alexander M Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander M Friedman', 18)}}的其他基金
Modeling informatics data to track maternal risk and care quality
对信息学数据进行建模以跟踪孕产妇风险和护理质量
- 批准号:
10522536 - 财政年份:2022
- 资助金额:
$ 25.91万 - 项目类别:
Modeling informatics data to track maternal risk and care quality
对信息学数据进行建模以跟踪孕产妇风险和护理质量
- 批准号:
10701000 - 财政年份:2022
- 资助金额:
$ 25.91万 - 项目类别:
EnCoRe MOMS: Engaging Communities to Reduce Morbidity from Maternal Sepsis
EnCoRe MOMS:让社区参与降低孕产妇败血症的发病率
- 批准号:
10611196 - 财政年份:2022
- 资助金额:
$ 25.91万 - 项目类别:
EnCoRe MOMS: Engaging Communities to Reduce Morbidity from Maternal Sepsis
EnCoRe MOMS:让社区参与降低孕产妇败血症的发病率
- 批准号:
10927019 - 财政年份:2022
- 资助金额:
$ 25.91万 - 项目类别:
SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
- 批准号:
10459433 - 财政年份:2019
- 资助金额:
$ 25.91万 - 项目类别:
SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
- 批准号:
10217258 - 财政年份:2019
- 资助金额:
$ 25.91万 - 项目类别:
SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
- 批准号:
10018949 - 财政年份:2019
- 资助金额:
$ 25.91万 - 项目类别:
Mentored Clinical Scientist Research Career Development Award
指导临床科学家研究职业发展奖
- 批准号:
8968030 - 财政年份:2015
- 资助金额:
$ 25.91万 - 项目类别:
Mentored Clinical Scientist Research Career Development Award
指导临床科学家研究职业发展奖
- 批准号:
9517094 - 财政年份:2015
- 资助金额:
$ 25.91万 - 项目类别:
相似海外基金
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2019
- 资助金额:
$ 25.91万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2018
- 资助金额:
$ 25.91万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2017
- 资助金额:
$ 25.91万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2016
- 资助金额:
$ 25.91万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2015
- 资助金额:
$ 25.91万 - 项目类别:
Discovery Grants Program - Individual
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10058676 - 财政年份:2014
- 资助金额:
$ 25.91万 - 项目类别:
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10400736 - 财政年份:2014
- 资助金额:
$ 25.91万 - 项目类别:
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10178111 - 财政年份:2014
- 资助金额:
$ 25.91万 - 项目类别:
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10596135 - 财政年份:2014
- 资助金额:
$ 25.91万 - 项目类别:
CAREER: Robust Behavioral Fault Simulation Algorithms for Multilevel Simulation
职业:用于多级仿真的鲁棒行为故障仿真算法
- 批准号:
9733584 - 财政年份:1998
- 资助金额:
$ 25.91万 - 项目类别:
Continuing Grant














{{item.name}}会员




