Modeling informatics data to track maternal risk and care quality
对信息学数据进行建模以跟踪孕产妇风险和护理质量
基本信息
- 批准号:10522536
- 负责人:
- 金额:$ 77.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-08 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Kidney FailureAddressAdherenceAffectBiometryBlood BanksCaringCessation of lifeClinicalClinical ManagementClinical ResearchClinical TrialsComplexComplicationCountryDataData AnalysesDecision AnalysisDeteriorationDevelopmentDevicesDiagnosisDiscipline of obstetricsEclampsiaElectronic Health RecordEmergency SituationEventFailureGoalsGuidelinesHemorrhageHospitalizationHospitalsHypertensionHysterectomyIndividualInfectionInformaticsInterventionKnowledgeLeadershipManualsMaternal MortalityMeasuresMedicalMethodologyModelingOrganOutcomeOutcome AssessmentPatient riskPatientsPerinatalPerinatal EpidemiologyPharmaceutical PreparationsPhenotypePopulationPostpartum HemorrhagePractice ManagementProceduresProtocols documentationProviderQuality of CareRadiology SpecialtyRecommendationRecordsResearchResourcesRiskRisk EstimateSafetySecondary toSepsisSeveritiesStandardizationStrokeSystemTestingTimeVariantadverse maternal outcomesadverse outcomebasebehavioral phenotypingbilling databurden of illnessclinical developmentclinical riskcomorbiditydata standardsdesigndisabilityeconomic evaluationevidence basehigh riskimplementation scienceinnovationinsightmaternal morbiditymaternal riskmaternal safetymedical complicationmortalitymultidisciplinarynovelobstetric carepatient stratificationpregnancy hypertensionpreventprovider behaviorquality assuranceracial disparityresponserisk stratificationsafety assessmentsafety practiceservice coordinationsevere maternal morbiditysimulationstandardized caresystematic reviewtrend
项目摘要
ABSTRACT
While maternal severe morbidity and mortality increased significantly over recent decades, it is unclear to what
degree recommended safety practices for high-risk clinical scenarios are followed and reduce risk for adverse
maternal outcomes. A key strategy to reducing maternal risk has been implementation of `safety bundles' and
uniform protocols to standardize care for high-risk clinical conditions. While the standardized clinical measures
supported in these bundles are evidence based, there are major knowledge gaps related to implementation, care
quality surveillance, and outcomes assessment for safety protocols for postpartum hemorrhage, hypertensive
diseases of pregnancy, sepsis, and grossly abnormal vital signs (maternal early warning systems). Obstetrical
care involves complex coordination of services, clinicians, and resources, and leadership are limited in their
ability to track outcomes and identify high quality care in real time at scale. Despite clear management
recommendations, maternal mortality and safety reviews have identified that deficiencies in care often occur
secondary to providers deviating from recommendations, systems issues including delayed identification and
response, and hospital-level effects where non-optimal practices are normalized. The degrees to which
guidelines are followed and adverse outcomes can be averted are not known, and many hospitals are limited in
their ability to systematically review care. Data collected from the electronic health record (EHR) may be
instantaneously analyzed to identify at-risk patients and complications and track care and management in large
populations. Prior EHR research on obstetric hemorrhage by our study group of over 40,000 delivery
hospitalizations demonstrated that adjusted odds for peripartum hysterectomy decreased by half after
implementation of a hemorrhage safety bundle. The overarching hypothesis of this proposal is that EHR data
can reliably identify clinical-management factors associated with failure to rescue in the setting of maternal
emergencies such as: (i) severe hypertension, (ii) obstetric hemorrhage, (iii) sepsis, and (iv) frankly abnormal
maternal vital signs (maternal early warnings systems). Failure to rescue is defined as a failure to prevent a
clinically important deterioration, such as death or permanent disability, from an underlying illness or a
complication of medical care. We will analyze to what degree care follows bundle recommendations and estimate
risk for failure to rescue when guidelines are not followed. We will leverage the richness of EHR data to
characterize provider behavior and risk stratify patients. Our study group includes expertise in informatics, clinical
research, perinatal epidemiology, decision analysis, and biostatistics. EHR data from eight hospitals in a
research consortium will be analyzed. We will characterize clinical management, outcomes, and care quality for
severe hypertension, obstetric hemorrhage, sepsis, and frankly abnormal vital signs. Data from these analyses
will be used for a number of simulations to inform development of clinical trials and interventions.
抽象的
虽然孕产妇的严重发病率和死亡率在近几十年来显着增加,但尚不清楚什么
遵循高风险临床方案的学位建议安全实践,并降低了不利的风险
孕产妇的结果。降低孕产妇风险的关键策略是实施“安全束”和
统一的方案,标准化高危临床条件的护理。而标准化的临床措施
这些捆绑包中的支持是基于证据的,存在与实施,护理有关的主要知识差距
质量监视和结果评估,以评估产后出血的安全方案
怀孕,败血症和严重异常的生命体征(母体预警系统)的疾病。产科
护理涉及服务,临床医生和资源的复杂协调,领导才能受到限制
能够实时跟踪结果并实时确定高质量护理。尽管管理明确
建议,孕产妇死亡率和安全审查已经确定,经常发生护理不足
偏离建议的提供者,包括延迟识别和包括延迟标识和的系统问题
反应和医院级别的影响,在非最佳实践中归一化。学位
遵循准则,可以避免不利的结果,许多医院受到限制
他们有系统地审查护理的能力。从电子健康记录(EHR)收集的数据可能是
瞬间分析以识别危险患者以及并发症以及大型护理和管理
人群。我们的研究小组对超过40,000的研究小组对产科出血的事先研究
住院表明,调整后的围断子宫切除术的调整赔率减少了一半
实施出血安全束。该提案的总体假设是EHR数据
可以可靠地确定与未能在母亲的情况下营救有关的临床管理因素
紧急情况,例如:(i)严重的高血压,(ii)产科出血,(iii)败血症,(iv)坦率地异常
产妇生命体征(母体早期警告系统)。未能救援被定义为无法防止
潜在疾病或
医疗的并发症。我们将分析捆绑建议和估计的学位护理。
不遵循指南时未能营救的风险。我们将利用EHR数据的丰富性来
提供者的行为表征,风险将患者分层。我们的研究小组包括信息学专业知识,临床
研究,围产期流行病学,决策分析和生物统计学。来自八家医院的EHR数据
研究联盟将进行分析。我们将表征临床管理,成果和护理质量
严重的高血压,产科出血,败血症和坦率的生命体征。这些分析的数据
将用于许多模拟,以告知开发临床试验和干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander M Friedman其他文献
Antenatal pyelonephritis hospitalisation trends, risk factors and associated adverse outcomes: A retrospective cohort study.
产前肾盂肾炎住院趋势、危险因素和相关不良结果:一项回顾性队列研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christy Gandhi;Timothy Wen;Lilly Y. Liu;Whitney A. Booker;M. D'alton;Alexander M Friedman - 通讯作者:
Alexander M Friedman
Cesarean hysterectomy for placenta accreta spectrum: Surgeon specialty-specific assessment.
侵入性胎盘的剖宫产子宫切除术:外科医生专业评估。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.7
- 作者:
Koji Matsuo;Yongmei Huang;Shinya Matsuzaki;A. Vallejo;J. Ouzounian;Lynda D. Roman;F. Khoury‐Collado;Alexander M Friedman;J. Wright - 通讯作者:
J. Wright
Peripartum cardiomyopathy delivery hospitalization and postpartum readmission trends, risk factors, and outcomes.
围产期心肌病分娩住院和产后再入院趋势、危险因素和结果。
- DOI:
10.1016/j.preghy.2023.11.004 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hooman Azad;Timothy Wen;Natalie A. Bello;Whitney A. Booker;S. Purisch;M. D'alton;Alexander M Friedman - 通讯作者:
Alexander M Friedman
State-Level Indicators of Structural Racism and Severe Adverse Maternal Outcomes During Childbirth
结构性种族主义和分娩期间严重不良孕产妇结局的州级指标
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
J. Guglielminotti;G. Samari;Alexander M Friedman;R. Landau;Guohua Li - 通讯作者:
Guohua Li
Alexander M Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander M Friedman', 18)}}的其他基金
Modeling informatics data to track maternal risk and care quality
对信息学数据进行建模以跟踪孕产妇风险和护理质量
- 批准号:
10701000 - 财政年份:2022
- 资助金额:
$ 77.64万 - 项目类别:
EnCoRe MOMS: Engaging Communities to Reduce Morbidity from Maternal Sepsis
EnCoRe MOMS:让社区参与降低孕产妇败血症的发病率
- 批准号:
10611196 - 财政年份:2022
- 资助金额:
$ 77.64万 - 项目类别:
EnCoRe MOMS: Engaging Communities to Reduce Morbidity from Maternal Sepsis
EnCoRe MOMS:让社区参与降低孕产妇败血症的发病率
- 批准号:
10927019 - 财政年份:2022
- 资助金额:
$ 77.64万 - 项目类别:
SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
- 批准号:
9928205 - 财政年份:2019
- 资助金额:
$ 77.64万 - 项目类别:
SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
- 批准号:
10459433 - 财政年份:2019
- 资助金额:
$ 77.64万 - 项目类别:
SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
- 批准号:
10217258 - 财政年份:2019
- 资助金额:
$ 77.64万 - 项目类别:
SCH: Prediction of Preterm Birth in Nulliparous Women
SCH:未产妇早产的预测
- 批准号:
10018949 - 财政年份:2019
- 资助金额:
$ 77.64万 - 项目类别:
Mentored Clinical Scientist Research Career Development Award
指导临床科学家研究职业发展奖
- 批准号:
8968030 - 财政年份:2015
- 资助金额:
$ 77.64万 - 项目类别:
Mentored Clinical Scientist Research Career Development Award
指导临床科学家研究职业发展奖
- 批准号:
9517094 - 财政年份:2015
- 资助金额:
$ 77.64万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Theophylline Prophylaxis during Hypothermia to Limit Neonatal Nephron Damage
低温期间预防茶碱以限制新生儿肾单位损伤
- 批准号:
10656030 - 财政年份:2023
- 资助金额:
$ 77.64万 - 项目类别:
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
- 批准号:
10656829 - 财政年份:2023
- 资助金额:
$ 77.64万 - 项目类别:
Randomized Trial of Empiric Versus Selective Preventative Strategies for Kidney Stone Disease
肾结石的经验性预防策略与选择性预防策略的随机试验
- 批准号:
10426435 - 财政年份:2022
- 资助金额:
$ 77.64万 - 项目类别:
Randomized Trial of Empiric Versus Selective Preventative Strategies for Kidney Stone Disease
肾结石的经验性预防策略与选择性预防策略的随机试验
- 批准号:
10616785 - 财政年份:2022
- 资助金额:
$ 77.64万 - 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
- 批准号:
10481286 - 财政年份:2022
- 资助金额:
$ 77.64万 - 项目类别: