An Enabling Technology for Preclinical X-Ray Imaging of Biomaterials In-Vivo
体内生物材料临床前 X 射线成像的支持技术
基本信息
- 批准号:9927852
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-09 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithm DesignAlgorithmsAnimal ModelAnimalsAnodesBiocompatible MaterialsBiocompatible Materials TestingBiomaterials ResearchCell TherapyClinical ResearchCommunitiesComputer SimulationCorrelation StudiesCoupledDataData SetDevelopmentDiagnostic radiologic examinationDrug Delivery SystemsEnvironmentFailureGeometryImageImaging TechniquesImplantIn SituLiquid substanceMeasuresMetalsMethodsMonitorNatural regenerationNaturePenetrationPhasePropertyRadiation Dose UnitRefractive IndicesResearchResolutionResource SharingRoentgen RaysSolidSourceSpeedStructureSystemTechniquesTechnologyTimeTissue EngineeringTissuesTranslatingTranslationsTubeX-Ray Computed Tomographyabsorptionanimal imagingbasebiomaterial developmentcalcificationclinical applicationcontrast imagingdata acquisitiondesignexperimental studyfallshigh resolution imagingimage reconstructionimagerimaging modalityimaging potentialimaging systemimprovedin vivoin vivo Modelin vivo imaginginnovationmeltingnovelnovel therapeuticspre-clinicalpublic health relevancereconstructionresponsesoft tissuetomographytomosynthesis
项目摘要
DESCRIPTION (provided by applicant): The objective of this R01 application is to develop and evaluate a high-resolution X-ray phase- contrast (XPC) imaging system and associated image reconstruction algorithms for in-vivo volumetric imaging of biomaterials in small animal models. The need for improved imaging methods for evaluating and monitoring biomaterials for tissue engineering/regeneration, drug delivery, and cell therapies applications is great. The ideal
method would provide 3D quantitative information, possess high spatial resolution (<100 µm), allow deep tissue penetration (>5 cm), and provide contrast between tissue and material structures essential for evaluating tissue response and development. Currently available imaging methods fall short in one or more of these requirements and this is currently limiting the development of biomaterial-based therapies. Moreover, these limitations hinder a variety of other preclinical imaging applications. For high-resolution applications of XPC, a microfocus X-ray tube is required in combination with a magnification geometry. Although kW power tubes equipped with source gratings are being actively explored for XPC imaging using a Talbot-Lau interferometer, that implementation does not meet the resolution requirements needed for monitoring biomaterials in small animal models and many other preclinical applications. Despite significant effort devoted in recent years to the development of XPC computed tomography (CT) using tube-based sources, the technology is still plagued by long data-acquisition times and relatively high radiation doses. Accordingly, the technology is not yet suitable for routine live animal imaging. The dominant cause of the long acquisition times in high-resolution implementations of XPC CT is the brightness limitations of conventional microfocus tubes set by the melting point of the anode target material. Another important contributing factor is that the advantages of optimized tomosynthesis data-acquisition strategies coupled with advanced statistically principled image reconstruction methods have not been fully exploited. The proposed research directly addresses the current limitations of high-resolution XPC imaging and will permit its translation for in-vivo volumetric imaging of biomaterials in small animal models. Our approach involves a high degree of innovation regarding both the hardware implementation and image reconstruction methods. The specific aims of the project are as follows. Aim 1: Develop and characterize an XPC tomosynthesis imager based on a MetalJet source for 3D monitoring of biomaterials; Aim 2: Develop advanced image reconstruction algorithms to maximize image quality; Aim 3: Refine the imaging system via computer-simulations and imaging experiments; Aim 4: Validate XPC imaging for in-vivo volumetric imaging of biomaterials in pre-clinical animal models.
描述(由申请人提供):本R 01申请的目的是开发和评价高分辨率X射线相衬(XPC)成像系统和相关图像重建算法,用于小动物模型中生物材料的体内体积成像。对于用于评估和监测用于组织工程/再生、药物递送和细胞治疗应用的生物材料的改进的成像方法的需求是巨大的。理想
该方法将提供3D定量信息,具有高空间分辨率(<100 µm),允许深层组织穿透(>5 cm),并提供组织和材料结构之间的对比度,这对于评估组织反应和发育至关重要。目前可用的成像方法不符合这些要求中的一个或多个,这目前限制了基于生物材料的疗法的发展。此外,这些限制阻碍了各种其他临床前成像应用。 对于XPC的高分辨率应用,需要结合放大几何结构的微焦点X射线管。虽然千瓦功率管配备源光栅正在积极探索XPC成像使用Talbot-Lau干涉仪,该实施方案不满足监测小动物模型和许多其他临床前应用中的生物材料所需的分辨率要求。尽管近年来致力于开发使用基于管的源的XPC计算机断层扫描(CT)的显著努力,但是该技术仍然受到长的数据采集时间和相对高的辐射剂量的困扰。因此,该技术还不适合常规活体动物成像。XPC CT的高分辨率实现中的长采集时间的主要原因是由阳极靶材料的熔点设定的常规微聚焦管的亮度限制。另一个重要的影响因素是,优化的断层合成数据采集策略与先进的统计学原理图像重建方法的优势尚未得到充分利用。 拟议的研究直接解决了目前高分辨率XPC成像的局限性,并将允许其翻译为小动物模型中生物材料的体内体积成像。我们的方法涉及到高度的创新,无论是硬件实现和图像重建方法。该项目的具体目标如下。 目标1:开发和表征基于MetalJet源的XPC断层合成成像仪,用于生物材料的3D监测;目标2:开发先进的图像重建算法,以最大限度地提高图像质量;目标3:通过计算机模拟和成像实验优化成像系统;目标4:将XPC成像用于临床前动物模型中生物材料的体内体积成像。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Gold nanorods enable noninvasive longitudinal monitoring of hydrogels in vivo with photoacoustic tomography.
- DOI:10.1016/j.actbio.2020.09.048
- 发表时间:2020-09
- 期刊:
- 影响因子:9.7
- 作者:B. Shrestha;Katerina Stojkova;Richard C. Yi;M. Anastasio;J. Ye;E. Brey
- 通讯作者:B. Shrestha;Katerina Stojkova;Richard C. Yi;M. Anastasio;J. Ye;E. Brey
Recent advances in edge illumination x-ray phase-contrast tomography.
- DOI:10.1117/1.jmi.4.4.040901
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Zamir A;Hagen C;Diemoz PC;Endrizzi M;Vittoria F;Chen Y;Anastasio MA;Olivo A
- 通讯作者:Olivo A
Single-shot edge illumination x-ray phase-contrast tomography enabled by joint image reconstruction.
- DOI:10.1364/ol.42.000619
- 发表时间:2017-02-01
- 期刊:
- 影响因子:3.6
- 作者:Chen Y;Guan H;Hagen CK;Olivo A;Anastasio MA
- 通讯作者:Anastasio MA
A 3D human adipose tissue model within a microfluidic device.
- DOI:10.1039/d0lc00981d
- 发表时间:2021-01-21
- 期刊:
- 影响因子:6.1
- 作者:Yang F;Carmona A;Stojkova K;Garcia Huitron EI;Goddi A;Bhushan A;Cohen RN;Brey EM
- 通讯作者:Brey EM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Anastasio其他文献
Mark A Anastasio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Anastasio', 18)}}的其他基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
- 批准号:
10705173 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10017970 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10703212 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9927856 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10252852 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10443772 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9888370 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 53.91万 - 项目类别:
Research Grant