Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
基本信息
- 批准号:10705173
- 负责人:
- 金额:$ 18.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-06-20
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAutomobile DrivingBiologicalBiophotonicsClinicalCollaborationsComputing MethodologiesConfocal MicroscopyCoupledDataData SetDocumentationEquilibriumGoalsImageImage AnalysisImage EnhancementImaging technologyIntelligenceInterference MicroscopyLabelLasersLearningMachine LearningMapsMeasurementMeasuresMethodsMicroscopyModelingNeurosciencesOpticsOutputPerformancePhasePhysicsRefractive IndicesResearchResolutionScanningSemanticsSourceSource CodeSpecificityStainsSupervisionSystemTechnologyThree-Dimensional ImageThree-Dimensional ImagingTrainingTranslationsWidthWorkbiomarker discoverycellular imagingcomputerized toolsdata acquisitiondeep learningdesignfluorescence imagingimage reconstructionimage translationimaging biomarkerimaging modalityimaging scienceimprovedinnovationlearning strategymachine learning methodmicroscopic imagingmultimodalitynovelopen sourcereconstructionsuperresolution imagingsupervised learningtechnology research and developmenttomography
项目摘要
SUMMARY
In this technology research and development (TRD) project, advanced computational and machine learning
methods will be developed that address a variety of needs related to image formation and image analysis in
high-resolution label-free optical microscopy. Computational methods are being rapidly deployed that are
changing the way that measurement data are acquired and improving the formation and analysis of microscopy
images. The potential impact of such methods on the field of label-free microscopy is very high and can optimally
leverage inherent endogenous contrast mechanisms in innovative and informative ways. The developed
methods will serve as enabling technologies for many projects in the proposed center. The research will be
informed by and jointly developed and evaluated with the TRD and driving biological projects. A general theme
of this work is the integration of imaging science, physics- and deep learning (DL)-based approaches to
circumvent the limitations of label-free imaging and the use of objective image quality measures to systematically
validate and refine the developed methods. Three broad classes of computational methods will be investigated
that will enable the (1) image-to-image mapping of label-free images to provide computational specificity,
improved semantic segmentation, and/or enhanced spatial resolution; (2) improved reconstruction of images for
3D cellular imaging; and (3) extraction of biologically relevant information from multi-modality label-free image
data. The Specific Aims of the project are: Aim 1: Image-to-image translation methods for providing specificity,
semantic segmentation, and/or enhanced spatial resolution; Aim 2: Diffraction tomography and inverse
scattering methods for 3D imaging; and Aim 3: Biomarker discovery and multi-modal DL methods.
This successful completion of this project will result in computational and DL methods that will advance a variety
of label-free imaging technologies. These methods will enable improved computational staining, enhance of
spatial resolution, semantic segmentation, 3D image formation, and analysis of multi-modality label-free image
data. They will be systematically validated for use in the biomedical applications that are within the purview of
the proposed P41 center. All source code, trained models and documentation will be made open-source and
shared online.
总结
在这个技术研发(TRD)项目中,先进的计算和机器学习
将开发解决与图像形成和图像分析相关的各种需求的方法,
高分辨率无标记光学显微镜。计算方法正在迅速部署,
改变测量数据的获取方式,改善显微镜的形成和分析
图像.这种方法对无标记显微镜领域的潜在影响非常大,
以创新和信息丰富的方式利用固有的内源性对比机制。发达
这些方法将成为拟建中心许多项目的技术支持。这项研究将
由TRD提供信息,与TRD共同开发和评估,并推动生物项目。一个总的主题
这项工作的核心是整合成像科学,物理学和基于深度学习(DL)的方法,
规避无标记成像的限制和使用客观的图像质量措施,
验证和完善开发的方法。将研究三大类计算方法
这将使得(1)无标记图像的图像到图像映射能够提供计算特异性,
改进的语义分割和/或增强的空间分辨率;(2)改进的图像重建,
3D细胞成像;以及(3)从多模态无标记图像中提取生物相关信息
数据该项目的具体目标是:目标1:提供特异性的图像到图像翻译方法,
语义分割和/或增强的空间分辨率;目标2:衍射层析成像和逆成像
目标3:生物标记物发现和多模态DL方法。
这个项目的成功完成将导致计算和DL方法,将推进各种
无标记成像技术的一部分。这些方法将使得能够改进计算染色,增强免疫原性。
空间分辨率、语义分割、3D图像形成和多模态无标记图像分析
数据它们将被系统地验证,以用于生物医学应用,
P41中心所有源代码、经过训练的模型和文档都将开源,
分享到网上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Anastasio其他文献
Mark A Anastasio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Anastasio', 18)}}的其他基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
$ 18.81万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 18.81万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10703212 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10017970 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9927856 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
An Enabling Technology for Preclinical X-Ray Imaging of Biomaterials In-Vivo
体内生物材料临床前 X 射线成像的支持技术
- 批准号:
9927852 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10252852 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10443772 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9888370 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)