Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
基本信息
- 批准号:10705173
- 负责人:
- 金额:$ 18.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2027-06-20
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAutomobile DrivingBiologicalBiophotonicsClinicalCollaborationsComputing MethodologiesConfocal MicroscopyCoupledDataData SetDocumentationEquilibriumGoalsImageImage AnalysisImage EnhancementImaging technologyIntelligenceInterference MicroscopyLabelLasersLearningMachine LearningMapsMeasurementMeasuresMethodsMicroscopyModelingNeurosciencesOpticsOutputPerformancePhasePhysicsRefractive IndicesResearchResolutionScanningSemanticsSourceSource CodeSpecificityStainsSupervisionSystemTechnologyThree-Dimensional ImageThree-Dimensional ImagingTrainingTranslationsWidthWorkbiomarker discoverycellular imagingcomputerized toolsdata acquisitiondeep learningdesignfluorescence imagingimage reconstructionimage translationimaging biomarkerimaging modalityimaging scienceimprovedinnovationlearning strategymachine learning methodmicroscopic imagingmultimodalitynovelopen sourcereconstructionsuperresolution imagingsupervised learningtechnology research and developmenttomography
项目摘要
SUMMARY
In this technology research and development (TRD) project, advanced computational and machine learning
methods will be developed that address a variety of needs related to image formation and image analysis in
high-resolution label-free optical microscopy. Computational methods are being rapidly deployed that are
changing the way that measurement data are acquired and improving the formation and analysis of microscopy
images. The potential impact of such methods on the field of label-free microscopy is very high and can optimally
leverage inherent endogenous contrast mechanisms in innovative and informative ways. The developed
methods will serve as enabling technologies for many projects in the proposed center. The research will be
informed by and jointly developed and evaluated with the TRD and driving biological projects. A general theme
of this work is the integration of imaging science, physics- and deep learning (DL)-based approaches to
circumvent the limitations of label-free imaging and the use of objective image quality measures to systematically
validate and refine the developed methods. Three broad classes of computational methods will be investigated
that will enable the (1) image-to-image mapping of label-free images to provide computational specificity,
improved semantic segmentation, and/or enhanced spatial resolution; (2) improved reconstruction of images for
3D cellular imaging; and (3) extraction of biologically relevant information from multi-modality label-free image
data. The Specific Aims of the project are: Aim 1: Image-to-image translation methods for providing specificity,
semantic segmentation, and/or enhanced spatial resolution; Aim 2: Diffraction tomography and inverse
scattering methods for 3D imaging; and Aim 3: Biomarker discovery and multi-modal DL methods.
This successful completion of this project will result in computational and DL methods that will advance a variety
of label-free imaging technologies. These methods will enable improved computational staining, enhance of
spatial resolution, semantic segmentation, 3D image formation, and analysis of multi-modality label-free image
data. They will be systematically validated for use in the biomedical applications that are within the purview of
the proposed P41 center. All source code, trained models and documentation will be made open-source and
shared online.
概括
在该技术研发(TRD)项目中,高级计算和机器学习
将开发方法,以解决与图像形成和图像分析有关的各种需求
高分辨率无标签光学显微镜。计算方法正在迅速部署
改变获取测量数据的方式,并改善显微镜的形成和分析
图像。这种方法对无标签显微镜领域的潜在影响非常高,并且可以最佳地
以创新和有益的方式利用固有的内生对比机制。发达的
方法将作为拟议中心许多项目的促进技术。研究将是
由TRD和驱动生物学项目的通知并共同开发和评估。一个一般主题
这项工作是成像科学,物理学和深度学习(DL)的整合方法
规避无标签成像的局限
验证和完善开发的方法。将研究三类的计算方法
这将使(1)图像图像的(1)图像图像图像提供计算特异性,
改善语义分割和/或增强的空间分辨率; (2)改进图像的重建
3D细胞成像; (3)从无多模式标签图像中提取生物学相关信息
数据。该项目的具体目的是:目标1:图像到图像的翻译方法,以提供特异性,
语义分割和/或增强的空间分辨率;目标2:衍射断层扫描和逆
3D成像的散射方法;和目标3:生物标志物发现和多模式DL方法。
该项目的成功完成将导致计算和DL方法,这些方法将推动多种多样
无标签成像技术。这些方法将实现改进的计算染色,增强
空间分辨率,语义分割,3D图像形成和多模式标签图像的分析
数据。它们将被系统地验证,以用于在生物医学应用程序中
拟议的P41中心。所有源代码,训练有素的模型和文档都将进行开源,并且
在线共享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A Anastasio其他文献
Mark A Anastasio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A Anastasio', 18)}}的其他基金
Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
- 批准号:
10635347 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
$ 18.81万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10017970 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10703212 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
- 批准号:
9927856 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
An Enabling Technology for Preclinical X-Ray Imaging of Biomaterials In-Vivo
体内生物材料临床前 X 射线成像的支持技术
- 批准号:
9927852 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10252852 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
- 批准号:
10443772 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
- 批准号:
10442593 - 财政年份:2019
- 资助金额:
$ 18.81万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别: