Deep learning technologies for estimating the optimal task performance of medical imaging systems

用于评估医学成像系统最佳任务性能的深度学习技术

基本信息

项目摘要

ABSTRACT Modern medical imaging systems comprise complicated hardware and sophisticated computational methods. Given the sheer number of system parameters that impact image quality, the large variety in objects to be imaged, and ethical concerns, the assessment and refinement of emerging imaging technologies via clinical trials often is impossible. For these reasons, there is great interest in virtual imaging trials (VITs) that permit the automated simulation and analysis of clinically relevant imaging experiments. During the development and refinement of new imaging technologies via VITs, there is an important need for assessing objective image quality measures (OIQMs) that quantify the best possible utility of the resulting images for different diagnostic tasks—independent of the ability of the observer (human or algorithm) who interprets the images. In effect, such OIQMs can reveal the extent to which task-related information is present in imaging data and thus can be potentially extracted by a human observer or other numerical algorithm that is sub-optimal; this can permit the identification of opportunities for improved image processing or other technology changes that lead to improved performance on diagnostic tasks. The broad objective of the proposed research is to address this challenge by developing the next generation of open source and modality-agnostic computational methods for computing OIQMs that quantify the best possible performance of an imaging system—the so-called ideal observer performance—for clinically relevant tasks. Estimation of the best achievable performance of medical imaging technologies using realistic stochastic digital object phantoms and clinically relevant diagnostic tasks has been a holy grail for the medical image-quality assessment field, and the lack of success to date has limited the field to unrealistic object models and tasks for decades. When employed in VITs, our new methods will permit assessment of the amount of task-relevant information in image data and will accelerate the refinement and translation of promising new imaging technologies to the clinic. The Specific Aims of the project are: Aim 1: To develop and validate ambient generative adversarial networks (AmGANs) for creating ensembles of clinically relevant digital phantoms; Aim 2: To develop methods for estimating the optimal task performance of an imaging technology; Aim 3: To use the developed tools for assessing deep learning-based image restoration. The developed computational tools for computing OIQMs will be made open source. This will open entirely new avenues for assessing and refining emerging medical imaging technologies with a level of rigor and clinical relevance previously not possible.
摘要 现代医学成像系统包括复杂的硬件和复杂的计算方法。 考虑到影响图像质量的系统参数的绝对数量,对象的种类繁多 成像和伦理问题,通过临床对新兴成像技术的评估和改进 审判往往是不可能的。出于这些原因,人们对虚拟成像试验(VIT)非常感兴趣,这种试验允许 临床相关影像实验的自动模拟和分析。在开发和开发过程中 通过VITs改进新的成像技术,需要对目标图像进行评估 质量度量(OIQM),量化结果图像对不同诊断的最佳效用 任务-独立于解释图像的观察者(人或算法)的能力。实际上,就像 OIQM可以揭示与任务相关的信息在成像数据中的存在程度,因此可以 可能由人类观察者或其他次优的数值算法提取;这可以允许 确定改进图像处理或其他技术变革的机会,从而提高 诊断任务的性能。 拟议研究的广泛目标是通过发展下一代来应对这一挑战 用于计算OIQM的开放源码和与形态无关的计算方法,以量化最佳 对于临床相关的成像系统的可能性能--所谓的理想观察者性能 任务。利用现实随机性估计医学成像技术的最佳可实现性能 数字对象模型和临床相关诊断任务一直是医学图像质量的圣杯 评估领域,由于迄今缺乏成功,该领域仅限于不现实的对象模型和任务 几十年。当在VIT中使用时,我们的新方法将允许评估与任务相关的量 图像数据中的信息,并将加快有希望的新成像的提炼和转换 将技术应用于临床。该项目的具体目标是:目标1:开发和验证环境 用于创建临床相关数字幻象集合的生成性对抗网络(AMGAN);目标 2:开发估计成像技术的最佳任务绩效的方法;目标3:使用 开发了评估基于深度学习的图像恢复的工具。 开发的用于计算OIQM的计算工具将是开源的。这将完全打开 评估和改进具有严谨和临床水平的新兴医学成像技术的新途径 相关性以前是不可能的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark A Anastasio其他文献

Mark A Anastasio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark A Anastasio', 18)}}的其他基金

A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
  • 批准号:
    10665540
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
  • 批准号:
    10705173
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
  • 批准号:
    10367731
  • 财政年份:
    2022
  • 资助金额:
    $ 38.25万
  • 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
  • 批准号:
    10703212
  • 财政年份:
    2019
  • 资助金额:
    $ 38.25万
  • 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
  • 批准号:
    10017970
  • 财政年份:
    2019
  • 资助金额:
    $ 38.25万
  • 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
  • 批准号:
    9927856
  • 财政年份:
    2019
  • 资助金额:
    $ 38.25万
  • 项目类别:
An Enabling Technology for Preclinical X-Ray Imaging of Biomaterials In-Vivo
体内生物材料临床前 X 射线成像的支持技术
  • 批准号:
    9927852
  • 财政年份:
    2019
  • 资助金额:
    $ 38.25万
  • 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
  • 批准号:
    10252852
  • 财政年份:
    2019
  • 资助金额:
    $ 38.25万
  • 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
  • 批准号:
    10443772
  • 财政年份:
    2019
  • 资助金额:
    $ 38.25万
  • 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
  • 批准号:
    10442593
  • 财政年份:
    2019
  • 资助金额:
    $ 38.25万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了