Principles of operation of a neural learning circuit
神经学习电路的工作原理
基本信息
- 批准号:9975424
- 负责人:
- 金额:$ 10.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptive BehaviorsAffectAnimalsArchitectureAwardBehaviorBehavior ControlBehavioralBrainCellsCerebellar CortexCerebellar vermis structureCerebellumCharacteristicsComplexComputer ModelsCoupledDataElectrodesElementsEventEyeFaceFiberFrequenciesGoalsIndividualLanguageLeadLearningLinkMediatingMembraneMemoryMentorsModalityModelingModificationMotorMovementNatureNeuroanatomyNeuronsOutputPatternPhasePlayProcessPropertyPurkinje CellsRecurrenceResearchRewardsRoleSaccadesSignal TransductionSiteSpeedStructureSynapsesSynaptic plasticitySystemTestingTimebasebehavior observationexperienceinfancyinsightlearned behaviormotor behaviormotor learningneurophysiologyoculomotoroperationrelating to nervous systemresponsesensory stimulusstatisticstheories
项目摘要
PROJECT SUMMARY
We can learn and successfully recall faces, events, language, concepts, places, facts, things that were
frightening or rewarding, and the movement commands required to skillfully move our motor effectors.
Decades of scientific research have pointed to the role of synaptic plasticity as the basic currency of the brain’s
ability to learn and remember. While we have a fairly detailed understanding of the rules that govern changes
in synaptic strength and modifications of a neuron’s intrinsic membrane excitability, our understanding of how
these plastic changes lead to behavioral learning and memory is still in its infancy. Behavioral learning is an
emergent property of a complete neural learning circuit in which the sites and mechanisms of plasticity are
embedded. Without an understanding of the effects of plasticity at the circuit-level, we cannot truly understand
learning and memory. Arguably, motor adaptation is the domain where we have best chance to understand the
circuit-level rules that govern learning, due to the exquisite relationship between sensory stimuli and adaptive
behavior. The cerebellum has been shown to be the brain structure crucial for motor learning, and provides a
neural locus to begin to outline the circuit rules that govern learning. Our goal is to leverage the highly
conserved cytoarchitecture of the cerebellar circuit to identify the principles of operation that underpin neural
learning circuits more generally. During the mentored phase of this award, we will focus on a well-described
cerebellar-dependent behavior: pursuit direction learning. Even after the occurrence of a single movement
error in this task, the brain learns from the mistake, attempting to minimize the error in the next trial. In the first
aim, we will characterize the signals that drive the error-dependent acquisition of this motor memory at a
specific synapse in the cerebellar circuit, which is thought to contribute to the bulk of behavioral motor learning.
During the second aim, we will record from the complete cerebellar circuit. Our goal is to describe how
individual elements and synapses in the cerebellar circuit contribute to behavioral adaptation, including
constraints on the site(s) of plasticity that cause behavioral learning and allowing conclusions about the extent
to which learning occurs before, inside, or downstream of the cerebellar cortex. During the independent phase,
we will again record from the complete cerebellar circuit during a different cerebellar learning task: saccadic
adaptation. Using an adaptive behavior that relies on a different cerebellar region, we can begin to dissect the
circuit-level principles that generalize broadly across cerebellar learning. Together, our results will provide the
first circuit-level rules that underlie behavioral learning. These results should have broad implications across
other learning and memory systems, all of which exist as complex circuits that drive behavior.
项目概要
我们可以学习并成功回忆起面孔、事件、语言、概念、地点、事实、事物
令人恐惧或有益,以及熟练地移动我们的运动效应器所需的运动命令。
数十年的科学研究已经指出突触可塑性作为大脑的基本货币的作用
学习和记忆的能力。虽然我们对管理变革的规则有相当详细的了解
在突触强度和神经元内在膜兴奋性的改变中,我们对如何理解
这些可塑性变化导致行为学习和记忆仍处于起步阶段。行为学习是一种
完整神经学习回路的突现属性,其中可塑性的位点和机制是
嵌入的。如果不了解可塑性在电路层面的影响,我们就无法真正理解
学习和记忆。可以说,运动适应是我们最有机会理解的领域
由于感觉刺激和适应性之间的微妙关系,控制学习的电路级规则
行为。小脑已被证明是对运动学习至关重要的大脑结构,并提供了
神经轨迹开始概述控制学习的电路规则。我们的目标是利用高度
小脑回路的保守细胞结构以确定支撑神经的运作原理
更一般地学习电路。在该奖项的指导阶段,我们将重点关注一个详细描述的
小脑依赖行为:追求方向学习。即使发生单一动作之后
如果在此任务中出现错误,大脑会从错误中学习,尝试在下一次尝试中将错误最小化。在第一个
目标是,我们将表征驱动该运动存储器的误差相关采集的信号
小脑回路中的特定突触被认为有助于大部分行为运动学习。
在第二个目标期间,我们将从完整的小脑回路进行记录。我们的目标是描述如何
小脑回路中的各个元件和突触有助于行为适应,包括
对导致行为学习的可塑性位点的限制并允许得出有关程度的结论
学习发生在小脑皮层之前、内部或下游。在独立阶段,
我们将在不同的小脑学习任务期间再次记录完整的小脑回路:扫视
适应。使用依赖于不同小脑区域的适应性行为,我们可以开始剖析
广泛推广到小脑学习的电路级原理。我们的成果将共同提供
作为行为学习基础的第一个电路级规则。这些结果应该具有广泛的影响
其他学习和记忆系统,所有这些系统都作为驱动行为的复杂电路而存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David James Herzfeld其他文献
David James Herzfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David James Herzfeld', 18)}}的其他基金
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 10.65万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 10.65万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 10.65万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 10.65万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 10.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 10.65万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 10.65万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 10.65万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 10.65万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 10.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists