Leveraging interactive SMS messaging to monitor and support maternal mental health in Kenya
利用交互式短信监测和支持肯尼亚孕产妇心理健康
基本信息
- 批准号:9976950
- 负责人:
- 金额:$ 12.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAutomationAwardCaringCharacteristicsChildbirthClientClinicClinic VisitsClinical DataClinical TrialsClinical Trials DesignCommunicationComplicationComputer ModelsComputer softwareContraceptive UsageDataData AnalyticsData SetDevelopmentDiagnosticEmotionalEnrollmentEpidemiologistEquationEvaluationExclusive BreastfeedingFrequenciesGoalsHealth CommunicationHealth PersonnelHealth StatusHealth Status IndicatorsHealthcareHumanHybrid ComputersIndividualInfantInternationalInterventionK-18 conjugateKenyaLanguageMachine LearningMaternal and Child HealthMental DepressionMental HealthMentorsMethodsMinorModelingMonitorNatural Language ProcessingParentsParticipantPatientsPerinatalPersonsPilot ProjectsPostpartum PeriodPregnancyPregnancy ComplicationsPsyche structurePublic HealthRandomized Controlled TrialsResearchResearch PersonnelResearch TrainingResourcesSpecificitySupervisionSystemTestingTextText MessagingTimeTrainingUniversitiesVariantWashingtonWomanadaptive interventionadverse outcomebasecareerdepressive symptomsdesigndigitalexperiencehigh riskimplementation trialimprovedmHealthmachine learning methodmeetingsmultidisciplinaryopen sourceperipartum depressionpredictive modelingpreservationresponseservice interventionskillssocial mediasymposiumtherapy designtool
项目摘要
ABSTRACT
Perinatal depression, defined as a depressive episode during pregnancy or in the first year postpartum, is the
most common complication of childbirth, affecting up to 20% of peripartum women globally. An enormous gap
exists in supporting women experiencing perinatal depression. Mobile health (mHealth) interventions such as
interactive SMS text messaging with healthcare workers (HCWs) have been proposed as resource-efficient,
accessible adjuncts to in-person care. Realizing the full public health potential of mHealth for mental health will
require strategic use of automation and empiric definition of interventions that dynamically adapt to user needs.
This K18 mentored career enhancement award aims to support Dr. Keshet Ronen, an epidemiologist with
multidisciplinary training, to become an expert in analysis of mHealth communication and development of
adaptive mHealth interventions. Building on Dr. Ronen’s established expertise in development and evaluation of
mHealth interventions using SMS and social media, and supported by a team of experienced mentors, the
following research and training aims are proposed.
Training plan: Through didactic coursework, individual mentor meetings, seminars, and conferences, Dr. Ronen
seeks to accomplish the following Career Enhancement Goals. (1) Gain proficiency and experience using natural
language processing and machine learning methods to analyze mHealth communication. (2) Gain proficiency
and experience in design of an adaptive mHealth intervention. (3) Deepen understanding of mHealth intervention
design for mental health. (4) Enhance skills in international study implementation and clinical trial design.
The proposed training plan will augment Dr. Ronen’s prior training and experience and allow her to complete the
proposed Research plan: Mobile WACh is a unique interactive SMS messaging platform that has been shown
to improve maternal-child health and whose impact on perinatal depression is currently being evaluated in a
randomized controlled trial in Kenya, Mobile WACh Neo. We propose to leverage a dataset of >100,000 SMS
messages with >3000 peripartum women in previous and ongoing Mobile WACh studies to (1) develop a
predictive model that can detect client SMS indicating elevated depression symptoms, and (2) identify HCW
message characteristics associated with improvements in depression symptoms. (3) Models from Aims 1-2 will
be implemented in the Mobile WACh software to develop an adaptive version of Mobile WACh Neo that flags
concerning messages and guides HCWs on SMS composition. A pilot study of Adaptive Mobile WACh Neo will
be conducted, nested within the Mobile WACh Neo randomized controlled trial in Kenya (R01HD098105), to
evaluate its acceptability and preliminary impact on time taken for HCWs to respond to client messages.
Collectively, these activities will enable Dr. Ronen to become a leader in the study of adaptive mHealth
interventions to support maternal mental health in resource-limited settings.
摘要
围产期抑郁症,定义为怀孕期间或产后第一年的抑郁发作,是指
这是最常见的分娩并发症,影响全球多达20%的围产期妇女。巨大的差距
帮助患有围产期抑郁症的妇女。移动的保健干预措施,例如
与健康护理工作者(HCW)的交互式SMS文本消息传递已经被提议为资源高效的,
无障碍设施到人的护理。充分实现mHealth在精神卫生方面的公共卫生潜力,
需要战略性地使用自动化和经验性地定义动态适应用户需求的干预措施。
这个K18指导职业提升奖旨在支持流行病学家Keshet Ronen博士,
多学科培训,成为移动健康传播和发展分析专家,
适应性移动健康干预措施。基于Ronen博士在开发和评估
使用短信和社交媒体的移动健康干预措施,并得到经验丰富的导师团队的支持,
提出了以下研究和培训目标。
培训计划:通过教学课程,个人导师会议,研讨会和会议,Ronen博士
旨在实现以下职业发展目标。(1)熟练掌握和经验,使用自然
语言处理和机器学习方法来分析mHealth通信。(2)熟练掌握
和设计适应性移动健康干预的经验。(3)加深对移动健康干预的理解
为心理健康而设计。(4)提高国际研究实施和临床试验设计的技能。
拟议的培训计划将增加Ronen博士先前的培训和经验,并使她能够完成
拟议的研究计划:移动的WACh是一个独特的交互式短信平台,已被证明
改善母婴健康,目前正在评估其对围产期抑郁症的影响,
肯尼亚的随机对照试验,移动的WACh Neo。我们建议利用> 100,000条短信的数据集
在之前和正在进行的移动的WACh研究中,向>3000名围产期妇女提供信息,以(1)开发
预测模型可以检测表明抑郁症状加重的客户短信,以及(2)识别HCW
与抑郁症状改善相关的信息特征。(3)目标1-2的模型将
在移动的WACh软件中实施,以开发自适应版本的移动的WACh Neo,
关于短信和指导HCW的短信组成。自适应移动的WACh Neo的初步研究将
在肯尼亚的移动的WACh Neo随机对照试验(R 01 HD 098105)中嵌套进行,
评估其可接受性和对HCW响应客户消息所需时间的初步影响。
总的来说,这些活动将使Ronen博士成为自适应移动健康研究的领导者。
在资源有限的情况下采取干预措施,支持孕产妇心理健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshet Ronen其他文献
Keshet Ronen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshet Ronen', 18)}}的其他基金
CHV-NEO: Community-based digital communication to support neonatal health
CHV-NEO:基于社区的数字通信支持新生儿健康
- 批准号:
10563193 - 财政年份:2021
- 资助金额:
$ 12.81万 - 项目类别:
CHV-NEO: Community-based digital communication to support neonatal health
CHV-NEO:基于社区的数字通信支持新生儿健康
- 批准号:
10393486 - 财政年份:2021
- 资助金额:
$ 12.81万 - 项目类别:
Leveraging interactive SMS messaging to monitor and support maternal mental health in Kenya
利用交互式短信监测和支持肯尼亚孕产妇心理健康
- 批准号:
10176601 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Research Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 12.81万 - 项目类别:
Continuing Grant