Mitochondria and TFAM in Osteoblast Biology
成骨细胞生物学中的线粒体和 TFAM
基本信息
- 批准号:9977917
- 负责人:
- 金额:$ 23.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAgingBioenergeticsBiologicalBiologyBone MarrowCalvariaCell Differentiation processCellsCellular Metabolic ProcessComplementConsumptionCre driverDataDevelopmentDiseaseElectron TransportEnergy MetabolismEnsureGenesGenetic TranscriptionGlycolysisHomeostasisHypoxia Inducible FactorImpairmentIn VitroKnowledgeLeadLearningMaintenanceMeasuresMembrane PotentialsMesenchymalMesenchymal DifferentiationMetabolicMetabolic Bone DiseasesMetabolismMitochondriaMitochondrial DNAMusMutant Strains MiceMutationNewborn InfantOsteoblastsOsteocalcinOxidative PhosphorylationOxygenPathological fracturePeriosteal CellPhenotypePlayProcessProductionRegulationRoleSecondary toSourceStromal CellsTestingTimeUp-Regulationagedbonebone masscell typeexperimental studyfactor Again of function mutationin vitro Assayin vivoloss of function mutationmtTF1 transcription factormutantnovelnovel therapeuticsosteoblast differentiationosteogenicosteoprogenitor celloverexpressionpostnatalpreventprogenitortranscription factor
项目摘要
ABSTRACT
Once thought to be a mere consequence of the state of the cell, metabolism is now known to play a critical role
in dictating cell differentiation. Non-oxidative glycolysis and oxidative phosphorylation (OxPhos) are the two
sources of intracellular ATP. Factors that increase osteoblast activity and bone mass such as the Hypoxia-
Inducible Factor 1a (HIF1) have been shown to activate non-oxidative glycolysis. In vitro osteogenic
differentiation of mesenchymal progenitors increases both non-oxidative glycolysis and OxPhos. However, the
role of OxPhos in osteoblast biology in vivo is largely unexplored. To fill this gap in knowledge, we generated a
mutant mouse lacking Mitochondrial Transcription Factor A (TFAM) in uncommitted mesenchymal progenitors
and their descendants (PRX;TFAMf/f). TFAM regulates transcription of the mitochondrial genes that encode
thirteen subunits of the electron transport chain and thus controls OxPhos. Analysis of 3-week-old PRX;TFAMf/f
bones revealed the presence of a severe low bone mass phenotype with spontaneous fractures in mutants.
Our data thus indicate that mesenchymal TFAM is necessary for bone mass accrual. In addition, we provided
preliminary evidence that loss of TFAM inhibits the in vitro differentiation of bone marrow stromal cells
(BMSCs) into osteoblasts and significantly reduces their intracellular levels of ATP. Impairment of OxPhos is
the most powerful, consistent and best characterized biological consequence of loss of TFAM across
numerous cell types." " However, TFAM also regulates duplication of mitochondrial DNA, and mitochondria have
functions that go beyond OxPhos and ATP production. Therefore, to establish if the impairment of OxPhos and
thus the decreased intracellular ATP is the primary cause of the PRX;TFAMf/f bone phenotype, we asked
whether correcting the ATP levels through forced upregulation of non-oxidative glycolysis would prevent the
low bone mass of PRX;TFAMf/f mice. For this purpose, we crossed PRX;TFAMf/f mutants with mice
overexpressing a constitutively stabilized HIF1 in the same cells (PRX;HIF1dPAf/f). HIF1 is known to promote
non-oxidative glycolysis and to impair OxPhos.. Preliminary analysis of PRX;TFAMf/f;HIF1dPAf/f double mutant
mice revealed that increased HIF1 activity corrected the bone phenotype of PRX;TFAMf/f mutants. Building on
these findings, we will now test the hypothesis that TFAM in cells of the osteoblast lineage is crucial for bone
mass accrual and maintenance by promoting OxPhos and thus ensuring the proper levels of intracellular ATP.
We will test our hypothesis in three Aims. Progressive impairment of mitochondrial activity has been
associated with numerous aging-related diseases, but it is uncertain whether this association is due, at least in
part, to a dysfunctional OxPhos. The successful accomplishment of the experiments we propose in this
application will expand and deepen our knowledge of the role of energy metabolism, particularly OxPhos, in
the regulation of osteoblast differentiation and bone mass accrual and maintenance.
"
摘要
新陈代谢曾经被认为仅仅是细胞状态的结果,现在人们知道它起着关键作用
在决定细胞分化方面。非氧化性糖酵解和氧化磷酸化(OxPhos)是两种
细胞内ATP的来源。增加成骨细胞活性和骨量的因素,如缺氧,
诱导因子1a(HIF 1)已被证明可以激活非氧化糖酵解。体外成骨
间充质祖细胞的分化增加了非氧化糖酵解和OxPhos。但
OxPhos在体内成骨细胞生物学中的作用在很大程度上未被探索。为了填补这一知识空白,我们生成了一个
未定型间充质祖细胞中缺乏线粒体转录因子A(TFAM)的突变小鼠
及其后代(PRX;TFAMf/f)。TFAM调节线粒体基因的转录,
电子传递链的13个亚基,从而控制OxPhos。3周龄PRX的分析;TFAMf/f
骨骼显示突变体中存在严重的低骨量表型,伴有自发性骨折。
因此,我们的数据表明,间充质TFAM是必要的骨量积累。此外,我们还提供
TFAM缺失抑制骨髓基质细胞体外分化的初步证据
(BMSCs)进入成骨细胞并显著降低其细胞内ATP水平。OxPhos的损害是
TFAM丢失的最强大,一致和最好表征的生物学后果,
多种细胞类型。”“然而,TFAM也调节线粒体DNA的复制,线粒体具有
功能超越OxPhos和ATP生产。因此,为了确定OxPhos和
因此,细胞内ATP减少是PRX;TFAMf/f骨表型的主要原因,
通过强制上调非氧化性糖酵解来纠正ATP水平是否会阻止
PRX;TFAMf/f小鼠的低骨量。为此,我们将PRX;TFAMf/f突变体与小鼠杂交,
在相同的细胞中过表达组成型稳定的HIF 1(PRX; HIF 1dPAf/f)。已知HIF 1促进
非氧化糖酵解和损害OxPhos。PRX;TFAMf/f; HIF 1dPAf/f双突变体的初步分析
小鼠显示,增加的HIF 1活性校正了PRX;TFAMf/f突变体的骨表型。基础上
这些发现,我们现在将测试的假设,TFAM在细胞的成骨细胞系是至关重要的骨
通过促进OxPhos并因此确保细胞内ATP的适当水平来实现质量积累和维持。
我们将在三个目标中检验我们的假设。线粒体活性的进行性损害已经被
与许多与衰老有关的疾病有关,但目前还不确定这种联系是否是由于,至少在
一部分,一个功能失调的OxPhos。我们在这方面提出的实验的成功完成,
应用将扩大和加深我们对能量代谢作用的认识,特别是OxPhos,
成骨细胞分化的调控及骨量的增加和维持。
"
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ernestina Schipani其他文献
Ernestina Schipani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ernestina Schipani', 18)}}的其他基金
Hypoxia and mitochondria in spine development and congenital scoliosis
脊柱发育和先天性脊柱侧弯中的缺氧和线粒体
- 批准号:
10640491 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
2022 Bones and Teeth Gordon Research Conference and Seminar
2022年骨骼与牙齿戈登研究会议暨研讨会
- 批准号:
10376959 - 财政年份:2021
- 资助金额:
$ 23.02万 - 项目类别:
Regenerating Hyaline Cartilage Using Nanofibrous Hollow Microspheres and Synergizing TGF-beta and HIF
使用纳米纤维空心微球并协同 TGF-β 和 HIF 再生透明软骨
- 批准号:
10337864 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Mitochondria and TFAM in Osteoblast Biology
成骨细胞生物学中的线粒体和 TFAM
- 批准号:
10531537 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
HIF-2alpha, a Novel Regulator of Osteoblastogenesis
HIF-2alpha,成骨细胞生成的新型调节剂
- 批准号:
10320694 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
HIF-2alpha, a Novel Regulator of Osteoblastogenesis
HIF-2alpha,成骨细胞生成的新型调节剂
- 批准号:
10536669 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
HIF-2alpha, a Novel Regulator of Osteoblastogenesis
HIF-2alpha,成骨细胞生成的新型调节剂
- 批准号:
10391569 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Mitochondria and TFAM in Osteoblast Biology
成骨细胞生物学中的线粒体和 TFAM
- 批准号:
10361012 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Exploring the Physiological Roles of Osteoblastic EPO and Osteoblastic EPOR
探索成骨细胞 EPO 和成骨细胞 EPOR 的生理作用
- 批准号:
9107797 - 财政年份:2015
- 资助金额:
$ 23.02万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 23.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 23.02万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 23.02万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 23.02万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 23.02万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 23.02万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 23.02万 - 项目类别: