Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
基本信息
- 批准号:9977697
- 负责人:
- 金额:$ 29.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressApoptosisAutomobile DrivingBiologicalBiophotonicsBiophysical ProcessBiophysicsBrainBrain NeoplasmsCell Culture TechniquesCell ShapeCellsCellular biologyClassificationCustomCytoskeletonDevelopmentDiseaseDorsalEGF geneElementsEngineeringExtracellular MatrixFamilyFiberFluorescenceFluorescence Resonance Energy TransferGeneticGlioblastomaHomeostasisImageIndividualInfiltrationInterphase CellLasersLocationMalignant neoplasm of brainMapsMeasurementMeasuresMechanicsMethodsMicrofilamentsMicrofluidicsModelingMolecularMolecular BiologyMolecular MotorsMorphogenesisMotorMyosin ATPaseMyosin Type IINeoplasm MetastasisNonmuscle Myosin Type IIANonmuscle Myosin Type IIBNormal tissue morphologyOncogenicPhenotypeProcessPropertyProtein IsoformsRegulationShapesSignal TransductionSliceStress FibersStructureSystemTechnologyThinkingTissue ModelTissuesTractionTraction Force MicroscopyTumor Cell InvasionUrsidae FamilyWorkbasecell motilityin vivoinnovationinterestloss of functionmechanical loadmechanical propertiesmigrationmolecular scalenanosurgerysensorstoichiometrytooltransmission processtwo-dimensionalvirtualviscoelasticity
项目摘要
PROJECT SUMMARY/ABSTRACT
Actomyosin stress fibers (SFs) enable cells to tense the extracellular matrix (ECM), a process key to cell shape
determination, polarity, motility, and tissue morphogenesis. SFs within motile cells have been broadly
classified into three specialized “subtypes” (dorsal fibers, transverse arcs, and ventral fibers) that differ in their
antero-posterior location and network connectivity. In addition to driving normal tissue development and
homeostasis, SFs and analogous contractile structures contribute to the invasion of tumors within tissue, a
notable example of which is the perivascular infiltration of the deadly brain tumor glioblastoma multiforme
(GBM). It has been hypothesized that dorsal fibers, transverse arcs, and ventral fibers tense each other and
the ECM in very specific ways to govern cell shape, polarity, and motility. However, this paradigm suffers from
several critical limitations. For example, it has not been directly demonstrated that each SF subtype generates
tension as commonly assumed, which in turn derives from a lack of direct measurement of SF mechanical
properties in living cells. Additionally, while these subtypes are broadly understood to vary in the molecular
motors they contain (i.e. myosin II isoforms), we know virtually nothing about how these molecular-scale
differences create the contractility differences across SF subtypes. Finally, and perhaps most importantly, it is
unclear whether this subtype classification is relevant to the persistent migration of cells within tissue,
particularly in disease states driven by aberrant cell migration. In this proposal we address all three of these
critical open questions by combining single-cell biophotonic technologies, traditional cell and molecular biology
approaches, engineered culture systems, and ex vivo tissue models. A key enabling tool for these studies
(which our team has pioneered over the past decade) is femtosecond laser nanosurgery (FLN), which enables
us to selectively cut single SFs in living cells, thereby allowing us to deduce both the mechanical loads borne
by that SF and its structural contributions to the rest of the cell. In Aim 1, we will apply FLN to selectively incise
SFs from each canonical subtype to map these mechanical properties and structural contributions. We will
also combine FLN with single-cell micropatterning and fluorescence-based readouts of molecular tension to
determine how single SFs distribute tension throughout the cell and contribute to EGF-dependent polarization
and motility. In Aim 2, we will investigate how the stoichiometry and mechanochemical properties of specific
myosin II isoforms collaborate to determine the mechanical properties of the entire SF. In Aim 3, we will
combine these approaches with a microfluidic model we developed with a brain-slice paradigm to determine
how specific SF subtypes and the myosin isoforms therein contribute to perivascular invasion in GBM. To our
knowledge, Aim 3 studies will represent the first measurements of SF mechanics and function in mammalian
tissue. In summary, this project will marry innovative single-cell and culture technologies to address major
open questions surrounding the microscale, biophysical mechanisms of cell shape shape, polarity, and motility.
项目总结/摘要
肌动球蛋白应力纤维(SF)使细胞能够拉紧细胞外基质(ECM),这是细胞形状的关键过程
决定、极性、运动性和组织形态发生。运动细胞内的SF已经广泛地
分为三个专门的"亚型"(背侧纤维,横弧,和腹侧纤维),不同的是,它们的功能。
前后位置和网络连接。除了驱动正常组织发育和
稳态,SF和类似的收缩结构有助于肿瘤在组织内的侵袭,
其中一个显著的例子是致命的脑肿瘤多形性胶质母细胞瘤的血管周围浸润
(GBM)。据推测,背侧纤维、横弧和腹侧纤维相互拉紧,
ECM以非常特定的方式控制细胞的形状、极性和运动性。然而,这种模式受到
几个关键的限制。例如,尚未直接证明每个SF亚型产生
张力,这反过来又源于缺乏直接测量SF机械
活细胞的特性。此外,虽然这些亚型被广泛理解为在分子水平上不同,
它们包含的马达(即肌球蛋白II亚型),我们几乎不知道这些分子尺度的
这些差异导致SF亚型之间的收缩性差异。最后,也许也是最重要的,
尚不清楚这种亚型分类是否与组织内细胞的持续迁移有关,
特别是在由异常细胞迁移驱动的疾病状态中。在本提案中,我们将解决所有这三个问题
通过结合单细胞生物光子技术,传统的细胞和分子生物学,
方法、工程化培养系统和离体组织模型。这些研究的一个关键工具
(我们的团队在过去十年中开创的)是飞秒激光纳米手术(FLN),它使
我们选择性地切割活细胞中的单个SF,从而使我们能够推断出所承受的机械载荷
通过SF和它对细胞其他部分的结构贡献。在目标1中,我们将应用FLN选择性地切割
SF从每个典型的亚型映射这些机械性能和结构的贡献。我们将
还将联合收割机FLN与单细胞微图案化和基于荧光的分子张力读数相结合,
确定单个SF如何在整个细胞中分配张力并促进EGF依赖性极化
和运动性。在目标2中,我们将研究如何化学计量和机械化学性质的具体
肌球蛋白II同种型协作以确定整个SF的机械性质。在目标3中,我们
联合收割机将这些方法与我们用脑切片范例开发的微流体模型相结合,以确定
特定的SF亚型和肌球蛋白亚型如何促进GBM血管周围浸润。对我们
目标3研究将代表哺乳动物SF力学和功能的首次测量,
组织.总之,该项目将结合创新的单细胞和培养技术,以解决主要的
围绕细胞形状、极性和运动性的微观生物物理机制的开放性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Kumar其他文献
Sanjay Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Kumar', 18)}}的其他基金
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10380867 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10185347 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10605241 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9912145 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10415961 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10170330 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9747438 - 财政年份:2018
- 资助金额:
$ 29.84万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10669215 - 财政年份:2017
- 资助金额:
$ 29.84万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
9399083 - 财政年份:2017
- 资助金额:
$ 29.84万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10445792 - 财政年份:2017
- 资助金额:
$ 29.84万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 29.84万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 29.84万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 29.84万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 29.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




