Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
基本信息
- 批准号:9977697
- 负责人:
- 金额:$ 29.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressApoptosisAutomobile DrivingBiologicalBiophotonicsBiophysical ProcessBiophysicsBrainBrain NeoplasmsCell Culture TechniquesCell ShapeCellsCellular biologyClassificationCustomCytoskeletonDevelopmentDiseaseDorsalEGF geneElementsEngineeringExtracellular MatrixFamilyFiberFluorescenceFluorescence Resonance Energy TransferGeneticGlioblastomaHomeostasisImageIndividualInfiltrationInterphase CellLasersLocationMalignant neoplasm of brainMapsMeasurementMeasuresMechanicsMethodsMicrofilamentsMicrofluidicsModelingMolecularMolecular BiologyMolecular MotorsMorphogenesisMotorMyosin ATPaseMyosin Type IINeoplasm MetastasisNonmuscle Myosin Type IIANonmuscle Myosin Type IIBNormal tissue morphologyOncogenicPhenotypeProcessPropertyProtein IsoformsRegulationShapesSignal TransductionSliceStress FibersStructureSystemTechnologyThinkingTissue ModelTissuesTractionTraction Force MicroscopyTumor Cell InvasionUrsidae FamilyWorkbasecell motilityin vivoinnovationinterestloss of functionmechanical loadmechanical propertiesmigrationmolecular scalenanosurgerysensorstoichiometrytooltransmission processtwo-dimensionalvirtualviscoelasticity
项目摘要
PROJECT SUMMARY/ABSTRACT
Actomyosin stress fibers (SFs) enable cells to tense the extracellular matrix (ECM), a process key to cell shape
determination, polarity, motility, and tissue morphogenesis. SFs within motile cells have been broadly
classified into three specialized “subtypes” (dorsal fibers, transverse arcs, and ventral fibers) that differ in their
antero-posterior location and network connectivity. In addition to driving normal tissue development and
homeostasis, SFs and analogous contractile structures contribute to the invasion of tumors within tissue, a
notable example of which is the perivascular infiltration of the deadly brain tumor glioblastoma multiforme
(GBM). It has been hypothesized that dorsal fibers, transverse arcs, and ventral fibers tense each other and
the ECM in very specific ways to govern cell shape, polarity, and motility. However, this paradigm suffers from
several critical limitations. For example, it has not been directly demonstrated that each SF subtype generates
tension as commonly assumed, which in turn derives from a lack of direct measurement of SF mechanical
properties in living cells. Additionally, while these subtypes are broadly understood to vary in the molecular
motors they contain (i.e. myosin II isoforms), we know virtually nothing about how these molecular-scale
differences create the contractility differences across SF subtypes. Finally, and perhaps most importantly, it is
unclear whether this subtype classification is relevant to the persistent migration of cells within tissue,
particularly in disease states driven by aberrant cell migration. In this proposal we address all three of these
critical open questions by combining single-cell biophotonic technologies, traditional cell and molecular biology
approaches, engineered culture systems, and ex vivo tissue models. A key enabling tool for these studies
(which our team has pioneered over the past decade) is femtosecond laser nanosurgery (FLN), which enables
us to selectively cut single SFs in living cells, thereby allowing us to deduce both the mechanical loads borne
by that SF and its structural contributions to the rest of the cell. In Aim 1, we will apply FLN to selectively incise
SFs from each canonical subtype to map these mechanical properties and structural contributions. We will
also combine FLN with single-cell micropatterning and fluorescence-based readouts of molecular tension to
determine how single SFs distribute tension throughout the cell and contribute to EGF-dependent polarization
and motility. In Aim 2, we will investigate how the stoichiometry and mechanochemical properties of specific
myosin II isoforms collaborate to determine the mechanical properties of the entire SF. In Aim 3, we will
combine these approaches with a microfluidic model we developed with a brain-slice paradigm to determine
how specific SF subtypes and the myosin isoforms therein contribute to perivascular invasion in GBM. To our
knowledge, Aim 3 studies will represent the first measurements of SF mechanics and function in mammalian
tissue. In summary, this project will marry innovative single-cell and culture technologies to address major
open questions surrounding the microscale, biophysical mechanisms of cell shape shape, polarity, and motility.
项目概要/摘要
肌动球蛋白应力纤维 (SF) 使细胞能够拉紧细胞外基质 (ECM),这是细胞形状的关键过程
决定、极性、运动性和组织形态发生。运动细胞内的 SF 已被广泛
分为三种专门的“亚型”(背侧纤维、横弓和腹侧纤维),它们的作用不同
前后位置和网络连接。除了驱动正常组织发育和
稳态、SF 和类似的收缩结构有助于肿瘤侵入组织内,
著名的例子是致命性脑肿瘤多形性胶质母细胞瘤的血管周围浸润
(GBM)。据推测,背侧纤维、横弓和腹侧纤维彼此紧张,
ECM 以非常特定的方式控制细胞形状、极性和运动性。然而,这种范式存在以下问题:
几个关键的限制。例如,尚未直接证明每种 SF 亚型都会产生
通常假设的张力,这又源于缺乏对 SF 机械的直接测量
活细胞中的特性。此外,虽然人们广泛认为这些亚型在分子结构上有所不同
它们包含的马达(即肌球蛋白 II 亚型),我们几乎不知道这些分子尺度如何
差异导致 SF 亚型之间的收缩性差异。最后,也许也是最重要的一点是
不清楚这种亚型分类是否与组织内细胞的持续迁移有关,
特别是在由异常细胞迁移驱动的疾病状态下。在本提案中,我们解决了所有这三个问题
通过结合单细胞生物光子技术、传统细胞和分子生物学来解决关键的开放问题
方法、工程培养系统和离体组织模型。这些研究的关键支持工具
(我们的团队在过去十年中开创的)是飞秒激光纳米手术 (FLN),它使
我们有选择地切割活细胞中的单个 SF,从而使我们能够推断出所承受的机械载荷
SF 及其对细胞其余部分的结构贡献。在目标 1 中,我们将应用 FLN 选择性切割
来自每个规范子类型的 SF 用于映射这些机械特性和结构贡献。我们将
还将 FLN 与单细胞微图案和基于荧光的分子张力读数相结合
确定单个 SF 如何在整个细胞中分配张力并有助于 EGF 依赖性极化
和动力。在目标 2 中,我们将研究特定物质的化学计量和机械化学性质。
肌球蛋白 II 亚型共同决定整个 SF 的机械特性。在目标 3 中,我们将
将这些方法与我们用脑切片范例开发的微流体模型相结合,以确定
特定的 SF 亚型和其中的肌球蛋白亚型如何导致 GBM 血管周围侵袭。致我们的
知识,目标 3 研究将代表哺乳动物中 SF 力学和功能的首次测量
组织。总之,该项目将结合创新的单细胞和培养技术来解决主要问题
围绕细胞形状、极性和运动性的微观生物物理机制的开放性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Kumar其他文献
Sanjay Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Kumar', 18)}}的其他基金
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10380867 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10185347 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10605241 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9912145 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10415961 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10170330 - 财政年份:2019
- 资助金额:
$ 29.84万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9747438 - 财政年份:2018
- 资助金额:
$ 29.84万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10669215 - 财政年份:2017
- 资助金额:
$ 29.84万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
9399083 - 财政年份:2017
- 资助金额:
$ 29.84万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10445792 - 财政年份:2017
- 资助金额:
$ 29.84万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 29.84万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 29.84万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 29.84万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 29.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 29.84万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 29.84万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




