Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
基本信息
- 批准号:10605241
- 负责人:
- 金额:$ 35.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAddressAdhesionsAffectBenchmarkingBiocompatible MaterialsBiologicalBiological ModelsBiologyBiophysical ProcessBiophysicsBiopsyBrainBrain NeoplasmsBrain PathologyCD44 geneCancer BiologyCell AdhesionCell ShapeCellsChromosome MappingCollaborationsCollagenComplexCoupledCuesCytoskeletonDefectDepositionDevelopmentDiffuseDigestionDiseaseDissectionEngineeringExcisionExtracellular MatrixExtracellular Matrix ProteinsFibronectinsFilopodiaGlioblastomaHomeostasisHumanHyaluronic AcidHyaluronidaseHydrogelsInfiltrationInstitutionIntegrinsInvadedLaboratoriesLasersLigandsLigationMalignant neoplasm of brainMarylandMechanicsMediatingMembraneMicrofluidicsMicrotubulesModelingMolecularMolecular TargetMolecular WeightNeurosurgeonOperative Surgical ProceduresPaperPathway interactionsPatientsPhysiologyPlayPolysaccharidesProcessPropertyProteomicsRegional AnatomyResearch PersonnelRoleSamplingScientistSeminalSiteStromal CellsStructureStudy modelsSystemTestingTimeTissuesTumor Cell InvasionTumor Cell MigrationVariantViscosityWorkbrain parenchymabrain tissuecell motilitycomparativefabricationin vivoinnovative technologiesinsightinterestmechanical drivemechanical signalmigrationmimeticsmouse modelnanosurgeryneoplastic cellnetwork architectureneurogenesisneurosurgerynew therapeutic targetnovel therapeuticsoverexpressionprotein expressionreceptorstemsuperresolution imagingtherapy resistantthree dimensional structuretissue mappingtransmission processtumorviscoelasticitywhite matter
项目摘要
PROJECT SUMMARY/ABSTRACT
Hyaluronic acid (HA) is the most abundant component of the human brain, where it serves essential structural,
mechanical, and cell-instructive functions. Adhesion between HA and its receptor CD44 critically regulates
development and homeostasis, and dysregulation of HA and/or CD44 causally drives many brain pathologies,
including invasion of the deadly brain tumor glioblastoma (GBM). Despite the clear biological significance of
HA-CD44 adhesion, comparatively little is known about either the biophysical mechanisms through which HA-
CD44 interactions drive cell adhesion, migration, or matrix remodeling or how HA composition (e.g. molecular
weight) influences adhesion and migration. Over the past decade, our team has made seminal contributions to
addressing these questions, including introducing and refining synthetic 3D HA matrices as a culture model for
studying GBM invasion. We also discovered that CD44 transduces HA-based mechanical signals to regulate
cell shape, cytoskeletal assembly, and motility. Most recently, we discovered that GBM cells engage HA using
“microtentacles” (McTNs), CD44-dependenent processes that extend tens of microns from the cell body, are
associated with HA digestion, and mechanically couple to the cytoskeleton through a complex that includes
IQGAP1 and CLIP170. McTNs bear important similarities to structures that have been observed in invasive
GBMs in vivo, and overexpression of McTN components is predictive of with aggressive progression and poor
survival in GBM. In this R01 application, we will leverage these discoveries and biomaterial platforms to
advance the field’s understanding of how HA and CD44 contribute to cell adhesion, migration, and invasion. In
our first aim, we will investigate how McTNs facilitate adhesion, invasion, and matrix remodeling. In our
second aim, we will determine how biophysical features of the HA network in brain tissue contributes to 3D
migration, using GBM as a model system. Our approach is distinguished by tight integration of engineered
biomaterial culture models, mouse models featuring human GBM stem/initiating cells, and analysis of biopsies
obtained from specific anatomic regions of human GBMs. Our multi-institutional team also uniquely combines
expertise in biomaterials, mechanobiology, neurosurgery, and cancer biology. Successful completion of these
studies will yield unprecedented insight into the biophysical basis through which HA and CD44 contribute to
adhesion and invasion, a problem of high fundamental interest that may lead to novel therapeutic targets in
GBM.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Kumar其他文献
Sanjay Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Kumar', 18)}}的其他基金
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10380867 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
Mechanisms of adhesion and invasion in hyaluronic acid matrices
透明质酸基质的粘附和侵袭机制
- 批准号:
10185347 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9912145 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10415961 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
10170330 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Cellular mechanobiology and engineering of active brown adipose tissue
活性棕色脂肪组织的细胞力学生物学和工程
- 批准号:
9747438 - 财政年份:2018
- 资助金额:
$ 35.14万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10669215 - 财政年份:2017
- 资助金额:
$ 35.14万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
9399083 - 财政年份:2017
- 资助金额:
$ 35.14万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
10445792 - 财政年份:2017
- 资助金额:
$ 35.14万 - 项目类别:
Biophysical Control of Cell Form and Function by Single Actomyosin Stress Fibers
单个肌动球蛋白应力纤维对细胞形态和功能的生物物理控制
- 批准号:
9977697 - 财政年份:2017
- 资助金额:
$ 35.14万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 35.14万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 35.14万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 35.14万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 35.14万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 35.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 35.14万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 35.14万 - 项目类别:














{{item.name}}会员




