Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
基本信息
- 批准号:9983851
- 负责人:
- 金额:$ 31.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureBenchmarkingBiologicalBiological ProcessCell CycleCell Cycle StageCell Differentiation processCell NucleusCellsCellular biologyChromatinChromatin FiberChromatin LoopChromosome StructuresChromosomesCollaborationsComplementComputational BiologyComputer SimulationDNA RepairDNA biosynthesisDataDefectDetectionDevelopmentDiabetes MellitusElementsEpigenetic ProcessGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGenome StabilityGenomicsGoalsHomeostasisHuman GenomeImageInterphaseInvestigationLaboratoriesLengthLightLinkMaintenanceMalignant NeoplasmsMapsMechanicsMethodologyMethodsMicroscopyMitosisModelingMolecularMolecular BiologyMolecular ConformationNuclearNucleic AcidsNucleosomesPatternPhysical condensationPhysicsPolymersPopulationProcessPropertyProteinsProteomeRecording of previous eventsRegulationResearchResolutionRoleSignal TransductionSiteStructureTechnologyValidationbasebiophysical modelchromosome conformation capturecomparativecomputerized toolsdata integrationdaughter celldevelopmental diseasegenome editinggenome-widegenome-wide analysishistone modificationhuman diseaseimaging geneticsimaging platformimprovedinnovationinsightlive cell imaginglive cell microscopymammalian genomemultidisciplinarynovel strategiesphysical modelpublic health relevancesingle cell analysisstem cell differentiationtargeted imagingthree dimensional structurethree-dimensional modelingtooltranscriptometransmission process
项目摘要
DESCRIPTION: The spatial organization of the genome impinges on all genomic processes, including gene regulation, maintenance of genome stability and chromosome transmission to daughter cells. A detailed understanding of the spatial arrangement of the human genome, referred to as the 4D nucleome, and the biological and physical principles that drive chromosome folding requires combining approaches from the fields of molecular and cell biology, imaging, genetics and genomics with approaches from physics, computational biology, and computer simulation. We have assembled a highly interdisciplinary center with the goal of generating extensively validated maps of the 4D nucleome, its physical and dynamic properties and its role in regulating the activity of the genome. First, the center will further optimize and
extensively validate a suite of genome-wide molecular methodologies, based on chromosome conformation capture (3C) that can probe the folding of chromosomes at the scale of single nucleosomes, chromatin fibers, chromosomes and the entire nucleus, across cell populations and in single cells. Given that chromosome and nuclear organization is tightly linked to biological state of the cell, the center will map the 4D nucleome for four key biological states representing different conformations during the cell cycle (interphase and mitosis), and during cell differentiation (pluripotent and differentiated states). We will obtain complementary data regarding the structure and dynamics of chromatin, at different length scales and in single cells using extensive high-throughput imaging, live cell imaging and super resolution microscopy. Data obtained with all approaches will be analyzed, integrated and modeled using a set of methods we will further develop to gain insights into the structure, physics and dynamics of chromosome folding over different length scales. Finally, a critical component of our proposal is the biological validation and further elaboration of the chromatin interaction maps that are generated from our conformational analyses. This validation will be achieved through site-specific editing of genomic sequence and epigenetic marks, the creation of new contact points within the genome, and the identification of factors (both protein and nucleic acid) that facilitat or restrict these interactions. Effects of such perturbations in the chromosome conformation on transcription will reveal relationships between specific chromosome structural features and gene expression.
描述:基因组的空间组织影响到所有基因组过程,包括基因调控、维持基因组稳定性和将染色体传递给子代细胞。要详细了解人类基因组的空间排列,即4D基因组,以及驱动染色体折叠的生物学和物理原理,需要将分子和细胞生物学、成像、遗传学和基因组学领域的方法与物理学、计算生物学和计算机模拟的方法结合起来。我们已经组建了一个高度跨学科的中心,目标是生成4D核基因组的广泛验证的图谱,它的物理和动力学性质以及它在调节基因组活动中的作用。一是中心将进一步优化和优化
广泛验证一套基于染色体构象捕捉(3C)的全基因组分子方法,该方法可以探测单核小体、染色质纤维、染色体和整个细胞核、跨细胞群体和单细胞的染色体折叠。鉴于染色体和核组织与细胞的生物状态密切相关,该中心将绘制代表细胞周期(间期和有丝分裂)和细胞分化(多能和分化状态)期间不同构象的四个关键生物状态的4D核组。我们将使用广泛的高通量成像、活细胞成像和超分辨率显微镜,在不同长度的尺度上和在单细胞中获得关于染色质结构和动力学的补充数据。使用所有方法获得的数据将使用一套我们将进一步开发的方法进行分析、集成和建模,以深入了解不同长度尺度上的染色体折叠的结构、物理和动力学。最后,我们建议的一个关键组成部分是对我们的构象分析产生的染色质相互作用图进行生物学验证和进一步细化。这种验证将通过对基因组序列和表观遗传标记进行定点编辑,在基因组内创建新的接触点,以及确定促进或限制这些相互作用的因素(蛋白质和核酸)来实现。染色体构象的这种扰动对转录的影响将揭示特定的染色体结构特征与基因表达之间的关系。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MCM complexes are barriers that restrict cohesin-mediated loop extrusion.
- DOI:10.1038/s41586-022-04730-0
- 发表时间:2022-06
- 期刊:
- 影响因子:64.8
- 作者:
- 通讯作者:
C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2.
- DOI:10.1038/s41592-018-0006-2
- 发表时间:2018-06
- 期刊:
- 影响因子:48
- 作者:Gao XD;Tu LC;Mir A;Rodriguez T;Ding Y;Leszyk J;Dekker J;Shaffer SA;Zhu LJ;Wolfe SA;Sontheimer EJ
- 通讯作者:Sontheimer EJ
Fast and efficient DNA replication with purified human proteins.
- DOI:10.1038/s41586-022-04759-1
- 发表时间:2022-06
- 期刊:
- 影响因子:64.8
- 作者:Baris Y;Taylor MRG;Aria V;Yeeles JTP
- 通讯作者:Yeeles JTP
Capturing Chromosome Conformation Across Length Scales.
- DOI:10.3791/64001
- 发表时间:2023-01-20
- 期刊:
- 影响因子:0
- 作者:Yang L;Akgol Oksuz B;Dekker J;Gibcus JH
- 通讯作者:Gibcus JH
Measuring Inaccessible Chromatin Genome-Wide Using Protect-seq.
使用 Protect-seq 在全基因组范围内测量不可接近的染色质。
- DOI:10.1007/978-1-0716-2899-7_4
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Spracklin,George;Yang,Liyan;Pradhan,Sriharsa;Dekker,Job
- 通讯作者:Dekker,Job
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Job Dekker其他文献
Job Dekker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Job Dekker', 18)}}的其他基金
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10879248 - 财政年份:2020
- 资助金额:
$ 31.89万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10818049 - 财政年份:2020
- 资助金额:
$ 31.89万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10447737 - 财政年份:2020
- 资助金额:
$ 31.89万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10266147 - 财政年份:2020
- 资助金额:
$ 31.89万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10666388 - 财政年份:2020
- 资助金额:
$ 31.89万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10661895 - 财政年份:2020
- 资助金额:
$ 31.89万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9021489 - 财政年份:2015
- 资助金额:
$ 31.89万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9150549 - 财政年份:2015
- 资助金额:
$ 31.89万 - 项目类别:
Nucleolar Genomics During Early Mammalian Development
哺乳动物早期发育过程中的核仁基因组学
- 批准号:
9003338 - 财政年份:2015
- 资助金额:
$ 31.89万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 31.89万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 31.89万 - 项目类别:
Continuing Grant














{{item.name}}会员




