Structural Annotation of the human Genome
人类基因组的结构注释
基本信息
- 批准号:7921275
- 负责人:
- 金额:$ 51.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-11 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiologicalBiological AssayCarbonCell LineChromatin LoopChromosomesDataData SetDefectDetectionDevelopmentDiseaseDistalDistantElementsEnhancersEventFluorescent in Situ HybridizationGene ExpressionGene Expression RegulationGene OrderGene TargetingGenesGenomeGenomicsGoldGroup IdentificationsHumanHuman GenomeHypersensitivityMapsMethodologyMethodsMolecular ConformationNational Human Genome Research InstituteOccupationsPhasePositioning AttributePrevalenceProcessRegulationRegulatory ElementRelative (related person)ReporterResearch PersonnelRoleStretchingTestingTimeTransfectionbasebeta Globincombinatorialfunctional genomicsgenetic elementhistone modificationinsightnovelprogramspromotertechnology developmenttool
项目摘要
DESCRIPTION (provided by applicant): Regulation of gene expression is crucial for normal development and defects in this process can result in disease. A better understanding of the genetic elements that contribute to regulation of disease genes can reveal causes of disease and may spur development of novel treatments. Large-scale analyses of genomes, such as those initiated by the ENCODE project, have started to reveal the positions of many regulatory elements. However, in most cases it is not known which elements regulate any given gene. Understanding the relationships between regulatory elements and genes is complicated by the fact that the linear order of elements and genes along chromosomes often does not reflect functional relationships between them. For instance, regulatory elements may affect distal genes but not those located immediately next to them. Therefore, functional connections between genes and regulatory elements must be experimentally determined. This proposal is based on the hypothesis that regulatory elements physically associate with their target gene through formation of chromatin loops. We propose to test this hypothesis by mapping of looping interactions between genes and regulatory elements throughout the well-studied 1 % of the genome selected by the ENCODE consortium. We will detect chromatin loops using a unique approach, Chromosome Conformation Capture (3C) methodology. During the last 2 years we have developed a new high-throughput 3C application, called 5C (for 3C-carbon-copy) which employs microarrays or quantitative sequencing for detection of chromatin loops. We will further optimize 5C by analysis of the beta-globin locus (aim 1). We will employ 5C to identify chromatin loops between genes and regulatory elements throughout the well-studied ENCODE regions of the human genome (aim 2). For each gene we will identify distant elements such as enhancers that interact with its promoter. We will validate looping interactions by FISH (aim 3). We will test the function of looping elements using transient transfections and by integrating looping data with other data obtained by the ENCODE consortium such as histone modifications, DNasel hypersensitivity and target gene expression (aim 3). We will make looping data available through the UCSC genome browser. These studies will map the network of connections between genes and regulatory elements and will reveal new insights into the mechanisms that underlie long-range gene regulation.
描述(由申请人提供):基因表达调控对正常发育至关重要,这一过程中的缺陷可能会导致疾病。更好地了解有助于疾病基因调控的遗传因素可以揭示疾病的原因,并可能刺激新疗法的开发。对基因组的大规模分析,例如由ENCODE项目发起的那些,已经开始揭示许多调控元件的位置。然而,在大多数情况下,并不知道哪些元件调节任何给定的基因。元件和基因沿染色体的线性顺序往往不能反映它们之间的功能关系,这使得理解调控元件和基因之间的关系变得复杂。例如,调控元件可能会影响远端基因,但不会影响紧邻它们的基因。因此,基因和调控元件之间的功能联系必须通过实验来确定。这一建议是基于这样的假设,即调控元件通过形成染色质环与其目标基因物理联系。我们建议通过绘制ENCODE联盟选择的基因组中经过充分研究的1%的基因组中基因和调控元件之间的循环相互作用来验证这一假设。我们将使用一种独特的方法-染色体构象捕获(3C)方法来检测染色质环。在过去的两年里,我们开发了一种新的高通量3C应用程序,称为5C(即3C-Carbon-Copy),它使用微阵列或定量测序来检测染色质环。我们将通过分析β-珠蛋白基因座进一步优化5C(目标1)。我们将使用5C来识别基因之间的染色质环和整个人类基因组中研究得很好的ENCODE区域的调控元件(目标2)。对于每个基因,我们将确定与其启动子相互作用的远距离元件,如增强子。我们将通过FISH验证循环交互(目标3)。我们将使用瞬时转染法测试环状元件的功能,并将环状数据与ENCODE联盟获得的其他数据相结合,如组蛋白修饰、DNasel超敏反应和靶基因表达(AIM 3)。我们将通过UCSC基因组浏览器提供循环数据。这些研究将绘制基因和调控元件之间的联系网络,并将揭示奠定基因远程调控基础的机制的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Job Dekker其他文献
Job Dekker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Job Dekker', 18)}}的其他基金
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10879248 - 财政年份:2020
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10818049 - 财政年份:2020
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10447737 - 财政年份:2020
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10266147 - 财政年份:2020
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10666388 - 财政年份:2020
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
10661895 - 财政年份:2020
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9983851 - 财政年份:2015
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9021489 - 财政年份:2015
- 资助金额:
$ 51.27万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9150549 - 财政年份:2015
- 资助金额:
$ 51.27万 - 项目类别:
Nucleolar Genomics During Early Mammalian Development
哺乳动物早期发育过程中的核仁基因组学
- 批准号:
9003338 - 财政年份:2015
- 资助金额:
$ 51.27万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Research Grant














{{item.name}}会员




