Using Computational Approaches to Optimize Asthma Care Management
使用计算方法优化哮喘护理管理
基本信息
- 批准号:9982399
- 负责人:
- 金额:$ 79.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAirAmericanAsthmaCaliforniaCaringCase ManagerCharacteristicsChronic DiseaseChronic Obstructive Airway DiseaseClinicalClinical MedicineComputerized Medical RecordComputersConsumptionCosts and BenefitsDataData SourcesDevelopment PlansDiabetes MellitusDiseaseDisease OutcomeDropsEmergency department visitEnrollmentFocus GroupsHealth Services ResearchHealthcareHealthcare SystemsHeart DiseasesHospitalizationHourIndividualInterventionLinkMachine LearningMedicineMethodsModelingModernizationOutcomePatient Care PlanningPatient riskPatientsPatternPerformancePhysiciansPhysicians&apos OfficesPsychological TransferPublic Health InformaticsPublishingRecordsResourcesRisk FactorsScientistServicesSystemTechniquesTimeTrainingUniversitiesWashingtonWeatheracute careadverse outcomeasthmatic patientbarrier to carebasecare costscomputer sciencecosthigh riskimprovedimproved outcomeindividual patientnovelpatient populationpredictive modelingprospectivesimulation
项目摘要
Abstract
The study will develop more accurate, computational predictive models and a novel automatic explanation
function to better identify patients likely to benefit most from care management. For many chronic diseases, a
small portion of patients with high vulnerabilities, severe disease, or great barriers to care consume most
healthcare resources and costs. To improve outcomes and resource use, many healthcare systems use
predictive models to prospectively identify high-risk patients and enroll them in care management to implement
tailored care plans. For maximal benefit from costly care management with limited service capacity, only patients
at the highest risk should be enrolled. But, current patient identification approaches have two limitations:
1) Low prediction accuracy causes misclassification, wasted costs, and suboptimal care. If an existing model
were used for care management allocation, enrollment would miss >50% of those who would benefit most
but include others unlikely to benefit. A healthcare system often has insufficient data for model training and
incomplete data on many patients. A typical model uses only a few risk factors for adverse outcomes, despite
many being known. Also, many predictive variables on patient and system characteristics are not found yet.
2) No explanation of the reasons for a prediction causes poor adoption of the prediction and busy care
managers to spend extra time and miss suitable interventions. Care managers need to understand why a
patient is predicted to be at high risk before allocating to care management and forming a tailored care plan.
Existing models rarely give such explanation, forcing care managers to do detailed patient chart reviews.
To address the limitations and optimize care management for more high-risk patients to receive appropriate
care, the study will: a) improve accuracy of computationally identifying high-risk patients and assess potential
impact on outcomes; b) automate explanation of computational prediction results and assess impact on model
accuracy and outcomes; c) assess automatic explanations' impact on care managers' acceptance of the
predictions and perceived care plan quality. The use case will be asthma that affects 9% of Americans and incurs
439,000 hospitalizations, 1.8 million emergency room visits, and $56 billion in cost annually. Asthma experts and
computer scientists will use data from three leading healthcare systems; a novel, model-based transfer learning
technique needing no other system's raw data; a novel, pattern-based automatic explanation technique that also
improves model generalizability and accuracy; a new data source PreManage to make patient data more
complete; and novel features on patient and system characteristics. These techniques can advance clinical
machine learning for various applications, improve patient identification, and help form tailored care plans. Focus
groups will be conducted with clinicians to explore generalizing the techniques to patients with chronic
obstructive pulmonary disease, diabetes, and heart diseases, on whom care management is also needed. The
results will potentially transform care management for better outcomes and more efficient resource use.
摘要
这项研究将开发出更准确的计算预测模型和一种新颖的自动解释
更好地识别可能从护理管理中受益最多的患者。对于许多慢性疾病,
一小部分脆弱性高、疾病严重或护理障碍大的患者消耗最多
医疗资源和成本。为了改善结果和资源利用,许多医疗保健系统使用
预测模型,以前瞻性地识别高风险患者,并将其纳入护理管理,
定制的护理计划。为了从服务能力有限且成本高昂的护理管理中获得最大利益,只有患者
风险最高的人都应该参加。但是,目前的患者识别方法有两个局限性:
1)低预测准确性导致错误分类、浪费成本和次优护理。如果现有的模型
用于护理管理分配,则登记将错过>50%的受益最多的人
但包括其他不太可能受益的人。医疗保健系统通常没有足够的数据用于模型训练,
许多患者的数据不完整。一个典型的模型只使用少数风险因素的不利结果,尽管
很多人都知道。此外,尚未找到许多关于患者和系统特征的预测变量。
2)没有解释预测的原因会导致预测的不佳采用和忙碌的护理
管理人员花费额外的时间和错过适当的干预措施。护理经理需要了解为什么
在分配给护理管理并形成定制护理计划之前,预测患者处于高风险中。
现有的模型很少给出这样的解释,迫使护理经理做详细的病人图表审查。
解决局限性,优化护理管理,让更多高危患者接受适当的
该研究将:a)提高计算识别高风险患者的准确性,并评估潜在的
对结果影响; B)自动解释计算预测结果并评估对模型的影响
准确性和结果; c)评估自动解释对护理管理人员接受
预测和感知护理计划质量。用例将是影响9%美国人的哮喘,
439,000次住院治疗,180万次急诊室就诊,每年花费560亿美元。哮喘专家和
计算机科学家将使用来自三个领先的医疗保健系统的数据;一种新颖的基于模型的迁移学习
技术不需要其他系统的原始数据;一种新颖的,基于模式的自动解释技术,
提高了模型的通用性和准确性;新的数据源PreManage使患者数据更加
完整性;以及患者和系统特性的新功能。这些技术可以促进临床
用于各种应用的机器学习,改善患者识别,并帮助制定量身定制的护理计划。重点
将与临床医生一起进行小组讨论,以探索将这些技术推广到慢性
阻塞性肺病、糖尿病和心脏病,也需要对他们进行护理管理。的
这些成果将有可能改变护理管理,以取得更好的成果和更有效地利用资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Luo其他文献
Gang Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Luo', 18)}}的其他基金
Gaze scanning by walking people with visual field loss
通过步行对视野丧失的人进行注视扫描
- 批准号:
10250313 - 财政年份:2020
- 资助金额:
$ 79.25万 - 项目类别:
Using Computational Approaches to Optimize Asthma Care Management
使用计算方法优化哮喘护理管理
- 批准号:
9750788 - 财政年份:2018
- 资助金额:
$ 79.25万 - 项目类别:
Using Computational Approaches to Optimize Asthma Care Management
使用计算方法优化哮喘护理管理
- 批准号:
10176558 - 财政年份:2018
- 资助金额:
$ 79.25万 - 项目类别:
Predicting Appropriate Admission of Bronchiolitis Patients in the Emergency Room
预测急诊室毛细支气管炎患者的适当入院
- 批准号:
9418778 - 财政年份:2016
- 资助金额:
$ 79.25万 - 项目类别:
Predicting Appropriate Admission of Bronchiolitis Patients in the Emergency Room
预测急诊室毛细支气管炎患者的适当入院
- 批准号:
9328146 - 财政年份:2016
- 资助金额:
$ 79.25万 - 项目类别:
Secondary Analyses and Archive of Naturalistic Driving Data in Aging and Dementia
衰老和痴呆症自然驾驶数据的二次分析和存档
- 批准号:
8619419 - 财政年份:2014
- 资助金额:
$ 79.25万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 79.25万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 79.25万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 79.25万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant














{{item.name}}会员




