Predicting Appropriate Admission of Bronchiolitis Patients in the Emergency Room
预测急诊室毛细支气管炎患者的适当入院
基本信息
- 批准号:9418778
- 负责人:
- 金额:$ 11.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-08 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract
Bronchiolitis is the most common illness leading to hospitalization in young children. For children under age
two, bronchiolitis incurs an annual total inpatient cost of $1.73 billion. Each year in the U.S., 287,000
emergency department (ED) visits occur because of bronchiolitis, with a hospital admission rate of 32-40%.
Due to a lack of evidence and objective criteria for managing bronchiolitis, ED disposition decisions (hospital
admission or discharge to home) are often made subjectively resulting in significant practice variation. Studies
reviewing admission need suggest that up to 29% of admissions from the ED are unnecessary. About 6% of ED
discharges for bronchiolitis result in ED returns with admission. These inappropriate dispositions waste limited
healthcare resources, increase patient and parental distress, expose patients to iatrogenic risks, and worsen
outcomes.
Clinical guidelines are designed to reduce practice variation and improve clinicians’ decision making. Existing
guidelines for bronchiolitis offer limited improvement in patient outcomes. Methodological shortcomings include
that the guidelines provide no specific thresholds for ED decisions to admit or to discharge, have an insufficient
level of detail, and do not account for differences in patient and illness characteristics including co-morbidities.
Predictive models are frequently used to complement clinical guidelines, reduce practice variation, and
improve clinicians’ decision making. Used in real time, predictive models can present objective criteria supported
by historical data for an individualized disease management plan and guide admission decisions. However,
existing predictive models for bronchiolitis patients in the ED have limitations, including low accuracy and the
assumption that the actual ED disposition decision was appropriate. To date, no operational definition of
appropriate admission exists. No model has been built based on appropriate admissions, which include both
actual admissions that were necessary and actual ED discharges that were unsafe.
To fill the gap, the proposed project will: (1) Develop an operational definition of appropriate hospital
admission for bronchiolitis patients in the ED. (2) Develop and test the accuracy of a new model to predict
appropriate hospital admission for a bronchiolitis patient in the ED. (3) Conduct simulations to estimate the
impact of using the model on bronchiolitis outcomes. The project will produce a new predictive model that can be
operationalized to guide and improve disposition decisions for bronchiolitis patients in the ED. Broad use of the
model would reduce iatrogenic risk, patient and parental distress, healthcare use, and costs and improve
outcomes for bronchiolitis patients. If the model proves to be accurate and associated with improved outcomes,
future study will test the impact of using it in a randomized controlled trial following its implementation into an
existing electronic medical record to facilitate real-time decision making.
摘要
毛细支气管炎是导致幼儿住院的最常见疾病。适用于未成年儿童
第二,毛细支气管炎每年的住院总费用为17.3亿美元。在美国,每年有28.7万人
急诊科就诊的原因是毛细支气管炎,住院率为32%-40%。
由于缺乏处理毛细支气管炎的证据和客观标准,急诊科处理决定(医院
入院或出院)通常是主观作出的,导致实践上的重大变化。研究
审查入学需要表明,多达29%的入学申请是不必要的。约6%的边缘
毛细支气管炎的出院导致ED在入院时返回。这些不恰当的处置浪费有限
医疗资源,增加患者和父母的痛苦,使患者面临医源性风险,并恶化
结果。
临床指南旨在减少实践差异,改善临床医生的决策。现有
毛细支气管炎指南对患者预后的改善有限。方法上的缺陷包括
指引没有为教育署作出接纳或释放的决定提供具体的门槛,有不足之处
详细程度,不考虑患者和疾病特征的差异,包括共病。
预测模型经常被用来补充临床指南,减少实践差异,以及
提高临床医生的决策水平。实时使用预测模型可以提供支持的客观标准
通过历史数据制定个体化的疾病管理计划,指导入院决策。然而,
急诊室现有的毛细支气管炎患者预测模型存在局限性,包括准确性低和
假设实际的ED处置决定是适当的。到目前为止,没有可操作的定义
存在适当的入院条件。还没有建立基于适当招生的模型,其中包括两者
实际需要的入院和不安全的实际急救出院。
为了填补这一空白,拟议的项目将:(1)制定适当医院的业务定义
急诊科毛细支气管炎患者入院。(2)开发和检验新模型的预测精度
急诊科毛细支气管炎患者的适当入院。(3)进行模拟以估计
使用该模型对毛细支气管炎预后的影响。该项目将产生一种新的预测模型,可以
用于指导和改进急诊科毛细支气管炎患者的处置决策。广泛使用
该模式将降低医源性风险、患者和父母的痛苦、医疗保健使用和成本,并改善
毛细支气管炎患者的预后。如果模型被证明是准确的,并与改善的结果相关联,
未来的研究将测试在随机对照试验中使用它的影响,在它被实施到
现有的电子病历,便于实时决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Luo其他文献
Gang Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Luo', 18)}}的其他基金
Gaze scanning by walking people with visual field loss
通过步行对视野丧失的人进行注视扫描
- 批准号:
10250313 - 财政年份:2020
- 资助金额:
$ 11.43万 - 项目类别:
Using Computational Approaches to Optimize Asthma Care Management
使用计算方法优化哮喘护理管理
- 批准号:
9750788 - 财政年份:2018
- 资助金额:
$ 11.43万 - 项目类别:
Using Computational Approaches to Optimize Asthma Care Management
使用计算方法优化哮喘护理管理
- 批准号:
10176558 - 财政年份:2018
- 资助金额:
$ 11.43万 - 项目类别:
Using Computational Approaches to Optimize Asthma Care Management
使用计算方法优化哮喘护理管理
- 批准号:
9982399 - 财政年份:2018
- 资助金额:
$ 11.43万 - 项目类别:
Predicting Appropriate Admission of Bronchiolitis Patients in the Emergency Room
预测急诊室毛细支气管炎患者的适当入院
- 批准号:
9328146 - 财政年份:2016
- 资助金额:
$ 11.43万 - 项目类别:
Secondary Analyses and Archive of Naturalistic Driving Data in Aging and Dementia
衰老和痴呆症自然驾驶数据的二次分析和存档
- 批准号:
8619419 - 财政年份:2014
- 资助金额:
$ 11.43万 - 项目类别:
相似海外基金
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Standard Grant
Conference: RRSP: Responsible Collaboration through Appropriate Research Security
会议:RRSP:通过适当的研究安全进行负责任的合作
- 批准号:
2348714 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Standard Grant
REACHing underserved and undiagnosed populations living with STBBIs in Alberta, Saskatchewan and Manitoba: "Test, treat and linkage to culturally appropriate care"
覆盖阿尔伯塔省、萨斯喀彻温省和曼尼托巴省服务不足和未确诊的 STBBI 患者:“检测、治疗并与文化上适当的护理联系起来”
- 批准号:
487552 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Operating Grants
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
- 批准号:
23K09279 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconstruction of empirical model for promotion/inhibition of autonomous and appropriate consumption and continuous consumption behavior
自主适度消费与持续消费行为促进/抑制实证模型重构
- 批准号:
23K01651 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-producing a situationally appropriate and empirically-grounded approach to student-centred curriculum in early childhood education in Kenya
共同制定肯尼亚幼儿教育中以学生为中心的课程,适合具体情况且以经验为基础的方法
- 批准号:
2881470 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Studentship
Addressing risk, stakeholder preferences and appropriate responses to the UK energy crisis in a climate changed world
在气候变化的世界中应对英国能源危机的风险、利益相关者偏好和适当应对措施
- 批准号:
2892667 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Studentship
Optimisation of assessing severity and emergency care to develop the appropriate emergency medical system
优化严重程度和紧急护理评估,以开发适当的紧急医疗系统
- 批准号:
23K16253 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of sexual dysfunction in schizophrenia and identification of appropriate prolactin levels.
阐明精神分裂症的性功能障碍并确定适当的催乳素水平。
- 批准号:
23K14806 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Clinical epidemiological research on appropriate antimicrobial use in dentistry and oral surgery
牙科和口腔外科适当使用抗菌药物的临床流行病学研究
- 批准号:
23K16241 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




