Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
基本信息
- 批准号:9982344
- 负责人:
- 金额:$ 47.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-26 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAtomic Force MicroscopyBiologicalCellsCentronuclear myopathyCharacteristicsChemicalsChimera organismComplexCoupledCouplingCrowdingDependenceDiagnosticDimensionsDiseaseDominant-Negative MutationDynaminDynamin 2Dynamin IElementsEnvironmentEpilepsyEvolutionExtravasationGenesGeometryGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHumanHuman PathologyHydrolysisImpairmentIn VitroIndividualKineticsKnowledgeLengthLifeLinkLipidsMaintenanceMeasurementMeasuresMechanicsMediatingMembraneModernizationMolecularMutationNanoscopyNanotechnologyNeckOrganellesOsmotic PressureOutcomePathologicPathologyPathway interactionsPhenotypePhysiologicalPoint MutationProblem SolvingProcessPropertyProtein AnalysisProtein EngineeringProtein IsoformsProteinsRegulationSignal TransductionSpeedStochastic ProcessesStressSurfaceSystemTertiary Protein StructureTestingTherapeuticTimeTissuesTubeVariantbasebiophysical techniquesconstrictiondimerin vivoinsightmembermembrane activitymembrane modelmutantnanonanomechanicsnanoscalenervous system disordernext generationnovelnovel therapeutic interventionprotein complexprototypepublic health relevancereconstitutionself assemblysingle moleculesubmicrontool
项目摘要
PROJECT SUMMARY
Membrane fission is associated with the breakage of a tiny nanometer-scale membrane neck connecting two
separating/dividing membrane compartments at the late stages of division. Severing this neck in a timely
and leakage-free manner is critical for normal functioning of endomembrane systems, hence membrane
fission is performed by specialized and tightly-regulated protein machinery assembling on the neck. While
our current mechanistic understanding of fission, in life and disease, is heavily based upon in vitro
reconstitution approaches, such approaches rarely (if at all) reproduce confined and crowded environment
of the neck. Instead, in vitro reconstitution has been mostly performed using large (sub-micron to micron
scale) membrane templates of various physico-chemical properties, resulting in controversial outcomes and
precluding rigorous mechanistic analysis of fission. This project is focused on creation of the next-
generation in vitro approaches that reconstruct and quantify membrane fission at physiological length/time
scales. We will combine nanotechnology with modern biophysical approaches and protein engineering to
solve the long-standing puzzle of membrane fission mediated by the proteins of dynamin superfamily, which
are intimately involved in intracellular fusion/fission and directly linked to various human pathologies. We
will approach this problem from several different angles:
- We will perform single-molecule analysis of dynamin oligomerization on membrane surfaces with
precisely (2 nm) calibrated curvature (10-1 to 10-2 nm range) to identify and characterize
elementary mechano-chemical units assembled by dynamin. We will determine (i) the
pathways of dynamin oligomerization/self-assembly on a curved membrane surface, (ii) the
size/geometrical arrangement of minimal oligomers capable of cooperative GTP hydrolysis and (iii)
the effects of membrane curvature on self-assembly and GTPase activity of small dynamin oligomers.
- We will assess membrane activity of individual dynamin oligomers (dimers and higher order
multimers) at nano-confined membrane templates to determine how the force fields
produced by dynamin are coupled to lipid rearrangements throughout fission. We will
(i) measure the local forces produced by different dynamin oligomers and quantify associated
membrane deformations and instabilities, and (ii) determine pathway(s) of lipid rearrangements and
their dependence on the size/geometry of dynamin complexes and geometrical/mechanical
parameters of membrane templates.
- We will analyze effects of auxiliary proteins and critical mutations of dynamins, compare the self-
assembly and fission pathways for different members of dynamin superfamily to distinguish
general and protein-specific parameters (perhaps, even specific pathways) of
membrane fission and unravel molecular mechanisms behind functional evolution
and regulation of dynamin fission machinery.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim A Frolov其他文献
Vadim A Frolov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim A Frolov', 18)}}的其他基金
Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
- 批准号:
9217487 - 财政年份:2017
- 资助金额:
$ 47.81万 - 项目类别:
Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
- 批准号:
10246322 - 财政年份:2017
- 资助金额:
$ 47.81万 - 项目类别:
相似海外基金
Subsurface imaging of magnetic nanoparticles and quantification of nanomechanical properties of polymeric and biological materials by bimodal atomic force microscopy
通过双峰原子力显微镜对磁性纳米粒子进行地下成像并量化聚合物和生物材料的纳米机械性能
- 批准号:
318205773 - 财政年份:2016
- 资助金额:
$ 47.81万 - 项目类别:
Research Grants
High Speed Atomic Force Microscopy for Real Time Imaging of Biological Processes
用于生物过程实时成像的高速原子力显微镜
- 批准号:
1063279 - 财政年份:2011
- 资助金额:
$ 47.81万 - 项目类别:
Continuing Grant
Real-time biological imaging by atomic force microscopy
原子力显微镜实时生物成像
- 批准号:
341441-2007 - 财政年份:2006
- 资助金额:
$ 47.81万 - 项目类别:
Research Tools and Instruments - Category 1 (<$150,000)
Development of video atomic force microscopy for in vivo bioimaging of biological processes
开发用于生物过程体内生物成像的视频原子力显微镜
- 批准号:
BB/E001378/1 - 财政年份:2006
- 资助金额:
$ 47.81万 - 项目类别:
Research Grant
Electrohydrodynamics of Atomic Force Microscopy Imaging of Biological Membranes
生物膜原子力显微镜成像的电流体动力学
- 批准号:
0323564 - 财政年份:2005
- 资助金额:
$ 47.81万 - 项目类别:
Standard Grant
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
- 批准号:
99057-2000 - 财政年份:2003
- 资助金额:
$ 47.81万 - 项目类别:
Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
- 批准号:
99057-2000 - 财政年份:2002
- 资助金额:
$ 47.81万 - 项目类别:
Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
- 批准号:
99057-2000 - 财政年份:2001
- 资助金额:
$ 47.81万 - 项目类别:
Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
- 批准号:
99057-2000 - 财政年份:2000
- 资助金额:
$ 47.81万 - 项目类别:
Discovery Grants Program - Individual
Force controlled atomic force microscopy for biological specimen.
用于生物样本的力控原子力显微镜。
- 批准号:
10650030 - 财政年份:1998
- 资助金额:
$ 47.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)