Functional nanoscopy of membrane deformations and fission by dynamin superfamily members

动力超家族成员膜变形和裂变的功能纳米观察

基本信息

项目摘要

PROJECT SUMMARY Membrane fission is associated with the breakage of a tiny nanometer-scale membrane neck connecting two separating/dividing membrane compartments at the late stages of division. Severing this neck in a timely and leakage-free manner is critical for normal functioning of endomembrane systems, hence membrane fission is performed by specialized and tightly-regulated protein machinery assembling on the neck. While our current mechanistic understanding of fission, in life and disease, is heavily based upon in vitro reconstitution approaches, such approaches rarely (if at all) reproduce confined and crowded environment of the neck. Instead, in vitro reconstitution has been mostly performed using large (sub-micron to micron scale) membrane templates of various physico-chemical properties, resulting in controversial outcomes and precluding rigorous mechanistic analysis of fission. This project is focused on creation of the next- generation in vitro approaches that reconstruct and quantify membrane fission at physiological length/time scales. We will combine nanotechnology with modern biophysical approaches and protein engineering to solve the long-standing puzzle of membrane fission mediated by the proteins of dynamin superfamily, which are intimately involved in intracellular fusion/fission and directly linked to various human pathologies. We will approach this problem from several different angles: - We will perform single-molecule analysis of dynamin oligomerization on membrane surfaces with precisely (2 nm) calibrated curvature (10-1 to 10-2 nm range) to identify and characterize elementary mechano-chemical units assembled by dynamin. We will determine (i) the pathways of dynamin oligomerization/self-assembly on a curved membrane surface, (ii) the size/geometrical arrangement of minimal oligomers capable of cooperative GTP hydrolysis and (iii) the effects of membrane curvature on self-assembly and GTPase activity of small dynamin oligomers. - We will assess membrane activity of individual dynamin oligomers (dimers and higher order multimers) at nano-confined membrane templates to determine how the force fields produced by dynamin are coupled to lipid rearrangements throughout fission. We will (i) measure the local forces produced by different dynamin oligomers and quantify associated membrane deformations and instabilities, and (ii) determine pathway(s) of lipid rearrangements and their dependence on the size/geometry of dynamin complexes and geometrical/mechanical parameters of membrane templates. - We will analyze effects of auxiliary proteins and critical mutations of dynamins, compare the self- assembly and fission pathways for different members of dynamin superfamily to distinguish general and protein-specific parameters (perhaps, even specific pathways) of membrane fission and unravel molecular mechanisms behind functional evolution and regulation of dynamin fission machinery.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim A Frolov其他文献

Vadim A Frolov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim A Frolov', 18)}}的其他基金

Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
  • 批准号:
    9217487
  • 财政年份:
    2017
  • 资助金额:
    $ 47.81万
  • 项目类别:
Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
  • 批准号:
    10246322
  • 财政年份:
    2017
  • 资助金额:
    $ 47.81万
  • 项目类别:

相似海外基金

Subsurface imaging of magnetic nanoparticles and quantification of nanomechanical properties of polymeric and biological materials by bimodal atomic force microscopy
通过双峰原子力显微镜对磁性纳米粒子进行地下成像并量化聚合物和生物材料的纳米机械性能
  • 批准号:
    318205773
  • 财政年份:
    2016
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Research Grants
High Speed Atomic Force Microscopy for Real Time Imaging of Biological Processes
用于生物过程实时成像的高速原子力显微镜
  • 批准号:
    1063279
  • 财政年份:
    2011
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Continuing Grant
Real-time biological imaging by atomic force microscopy
原子力显微镜实时生物成像
  • 批准号:
    341441-2007
  • 财政年份:
    2006
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Development of video atomic force microscopy for in vivo bioimaging of biological processes
开发用于生物过程体内生物成像的视频原子力显微镜
  • 批准号:
    BB/E001378/1
  • 财政年份:
    2006
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Research Grant
Electrohydrodynamics of Atomic Force Microscopy Imaging of Biological Membranes
生物膜原子力显微镜成像的电流体动力学
  • 批准号:
    0323564
  • 财政年份:
    2005
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Standard Grant
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2003
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2002
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Discovery Grants Program - Individual
Biological applications of atomic force microscopy
原子力显微镜的生物学应用
  • 批准号:
    99057-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Discovery Grants Program - Individual
Force controlled atomic force microscopy for biological specimen.
用于生物样本的力控原子力显微镜。
  • 批准号:
    10650030
  • 财政年份:
    1998
  • 资助金额:
    $ 47.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了