Core C: CODEX Core
核心 C:CODEX 核心
基本信息
- 批准号:10187130
- 负责人:
- 金额:$ 35.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AbbreviationsAlgorithmsAntibodiesAntigensArchitectureBiological MarkersCell CommunicationCell OntogenyCellsCellular StructuresCluster AnalysisComputing MethodologiesConsultationsDataDetectionDevelopmentDiseaseDuct (organ) structureEarly DiagnosisEnsureEpithelialFibroblastsFluorescence-Activated Cell SortingFrequenciesGenerationsGeneticGoalsGraphHumanHuman ResourcesImageImmuneImmune EvasionImmune systemImmunohistochemistryIndividualLaboratoriesLearningLinkMalignant NeoplasmsMalignant neoplasm of pancreasMapsMesenchymalMetaplasiaMethodsMonitorMusNeighborhoodsPancreasPancreatic Ductal AdenocarcinomaPopulationPublic HealthQuality ControlReagentResearchResearch PersonnelResourcesRetrievalRoleServicesSignal TransductionStainsStereotypingTimeTissue ProcurementsTissue imagingTissuesTreesTumor Suppressor GenesTumor-associated macrophagesUltrasonographyVisualizationWorkautomated analysisbasecancer cellcancer therapycell typechronic pancreatitiscomputer programcosteffective therapyhealth goalshuman tissueimmunoregulationin vivoindexingmouse modelopen sourcepancreas imagingpancreatic stellate cellprogramsresponsesingle-cell RNA sequencingspatial relationshipstem cellstissue preparationtooltreatment responsetumortumor growthtumor microenvironment
项目摘要
ABSTRACT (Core C)
A central focus of our program is understanding the roles of specific cell types, including immune cell
populations, throughout the initiation, development and spread of PDAC in mouse models and in humans. A
key aspect of this effort is to define the frequency, spatial relationships and activation states of cell types within
tumors, and to learn how these parameters change over time and in response to therapy. Additionally, while
each project focuses on a different aspect of PDAC, a comprehensive understanding of the role of the epithelial
compartment and the immune system in PDAC will require simultaneous analysis of each of these cell types in
multiple tissues. To achieve these goals, we will use CO-Detection by indEXing (CODEX), a new method
generated by Dr. Nolan's group at Stanford. CODEX will allow cytometric imaging of tissue sections with dozens
of antibodies. CODEX data from this Core can then be linked to complementary data from CyTOF and scRNA-
Seq used in individual projects. The Specific Aims of Core C for human and mouse pancreas studies are:
1. Provide CODEX processing to investigators, including staining, imaging and quality control
2. Provide CODEX analysis, including antigen clustering, cell type annotation and neighborhood mapping
3. Develop new antibodies and reagents for CODEX in consultation with P01 investigators
4. Develop standard workflows for tissue procurement, processing, storage and retrieval in partnership
with the human pancreas tissue core (Core B).
Projects 1, 2 and 3 will specifically use the CODEX core platform for studies of both mouse and human tissues.
Core C will work closely with the Human Tissue Core B to ensure appropriate human tissue preparation to
support CODEX analysis. Thus, Core C will provide services technically difficult and not available in most
laboratories, materials not available commercially or impossible to obtain elsewhere, and services more reliably
and cost-effectively performed than if performed in an individual investigator's laboratory. This CODEX Core
would be new, and unique at Stanford.
摘要(核心C)
我们计划的一个中心焦点是了解特定细胞类型的作用,包括免疫细胞
在小鼠模型和人类中,PDAC在整个启动、发展和传播过程中对群体的影响。一
这项工作的一个关键方面是定义细胞类型的频率、空间关系和激活状态,
肿瘤,并了解这些参数如何随着时间的推移和对治疗的反应而变化。此外,虽然
每个项目都侧重于PDAC的不同方面,全面了解上皮细胞的作用,
PDAC中的细胞区室和免疫系统将需要同时分析这些细胞类型中的每一种,
多种组织为了实现这些目标,我们将使用CO-Detection by indEXing(CODEX),一种新的方法
是由斯坦福大学的诺兰博士的研究小组产生的。CODEX将允许对组织切片进行细胞计数成像,
抗体。然后,来自该核心的CODEX数据可以与来自CyTOF和scRNA的互补数据相关联。
在单个项目中使用的Seq。核心C用于人类和小鼠胰腺研究的具体目的是:
1.为研究者提供CODEX处理,包括染色、成像和质量控制
2.提供CODEX分析,包括抗原聚类、细胞类型注释和邻域作图
3.与P01研究者协商,为CODEX开发新的抗体和试剂
4.合作开发组织采购、处理、储存和检索的标准工作流程
与人胰腺组织核心(核心B)。
项目1、2和3将专门使用CODEX核心平台进行小鼠和人体组织的研究。
核心C将与人体组织核心B密切合作,以确保适当的人体组织制备,
支持CODEX分析。因此,核心C将提供技术上困难的服务,并且在大多数情况下都不可用。
实验室,商业上无法获得或不可能在其他地方获得的材料,以及更可靠的服务
并且比在个体研究者的实验室中进行更具成本效益。CODEX核心
这在斯坦福大学将是一个全新的、独一无二的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARRY P NOLAN其他文献
GARRY P NOLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARRY P NOLAN', 18)}}的其他基金
Harmonizing single cell and spatial transcriptomics across HuBMAP organs to generate reproducible and robust maps
协调 HuBMAP 器官的单细胞和空间转录组学,生成可重复且稳健的图谱
- 批准号:
10818848 - 财政年份:2022
- 资助金额:
$ 35.07万 - 项目类别:
Stanford Tissue Mapping Center - STELLAR
斯坦福大学组织绘图中心 - STELLAR
- 批准号:
10818846 - 财政年份:2022
- 资助金额:
$ 35.07万 - 项目类别:
Spatial-Genomic Integrative Multi-Species Analysis of Lymph Node Metastasis
淋巴结转移的空间基因组综合多物种分析
- 批准号:
10401199 - 财政年份:2021
- 资助金额:
$ 35.07万 - 项目类别:
Application for Supplemental Funding from HUBMAP
向 HUBMAP 申请补充资金
- 批准号:
10228511 - 财政年份:2020
- 资助金额:
$ 35.07万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 35.07万 - 项目类别:
Continuing Grant














{{item.name}}会员




