Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
基本信息
- 批准号:10354662
- 负责人:
- 金额:$ 18.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAffectAlginatesAutomobile DrivingBiochemicalBiocompatible MaterialsBiologyCalciumCartilageCell ProliferationCell SizeCell SurvivalCell TransplantationCell physiologyCellsChelating AgentsCongenital AbnormalityCoupledCuesDefectDevelopmentDextransDiseaseDyesElementsEncapsulatedEngineeringEnvironmentEnzymesExtracellular MatrixFluorescenceFluorescence MicroscopyGlutathioneHumanHydrogelsInjuryLightLipid BilayersMechanical StressMechanicsMediatingMedicalMembraneMesenchymal Stem CellsMetalloproteasesMicrofluidicsModelingOrganOsmolar ConcentrationPhysical ChemistryPhysical environmentPlayProcessProductionPropertyProteinsReactionReaderRegulationReportingResearchRheologyRhodamineRoleStimulusStressSupporting CellSwellingSystemTechnologyTestingTherapeuticThinnessTimeTissue EngineeringTissuesVesicleWorkbasebiodegradable scaffoldbiomaterial compatibilitybioscaffoldbonecell behaviorcell growthconstrictioncrosslinkdesigndisulfide bondexperienceextracellularhealingimplantationimprovedin vivoinhibitorinterestmechanical forcemechanical propertiesmechanical signalmechanical stimulusmechanotransductionmigrationphysical propertyphysical stateprogramsrelease factorrepairedreplacement tissueresponserestorationscaffoldsensorspatiotemporalsynthetic biologytissue regeneration
项目摘要
Abstract
There is great need for engineered functional tissues to address currently unmet medical need for replacement
or restoration of damaged tissues and organs due to disease, injury and congenital defects. Biomaterial
scaffolds can play a key role in engineering tissues because they not only provide mechanical support and
deliver bioactive molecules and/or cells, but they also degrade to provide new space to support cell growth and
extracellular matrix production. It is desirable for the scaffold to degrade in concert with the rate of new tissue
formation. Scaffold degradation also dynamically affects its mechanical properties, which has been shown to
regulate host and transplanted cell behaviors, such as spreading, proliferation, migration and differentiation.
Although attempts have been made to predict and tailor the degradation rate of employed biodegradable
scaffolds prior to implantation for specific tissue regeneration applications, it is currently difficult to control their
degradation after implantation. To regulate scaffold degradation in a triggered fashion, exogenous or external
stimuli, such as enzymes, pH, and light, have been employed. Few have considered forces as a trigger input.
Biochemical molecules, such as enzymes secreted from hosted/transplanted cells, have already been reported
in efforts to control the degradation rate of biomaterial scaffolds. However, there are still challenges regarding
regulating the production amount of those molecules at a rate and level needed to match scaffold degradation
profile with engineered tissue formation while providing a minimal loss in mechanical support. Therefore,
dynamic regulation of the degradation of a tissue engineering scaffold via its response to its mechanical
environment may allow for design of smart biomaterials that resorb as the newly formed tissue is able to
support the required loads. A synthetic biology approach to create mechanosensitive synthetic cells (MSSCs)
harboring mechanosensitive channels for mimicking the ability of cells to secrete biochemicals for dynamically
degrading biomaterial scaffolds in response to environment mechanical signals is proposed. Synthetic cells are
cell-sized lipid bilayer vesicles encapsulating cell-free expression system expressing proteins of interest.
MSSCs loaded with different sized cargos will be created and their capability to release the payloads under
compressive stress will be examined (Aim 1). The MSSCs will then be encapsulated in a hydrogel system for
examining the capacity of external compressive stress-mediated payload release from MSSCs to regulate
hydrogel degradation (Aim 2). Lastly, the capacity of external compressive stress-controlled hydrogel
degradation in driving the function of hydrogel co-encapsulated cells will be examined (Aim 3). This work will
create a new class of hydrogels with a distinct mechanism of mechanoresponsiveness that dynamically react
to their physical environment and are anticipated to be valuable for engineering a wide range of tissues.
摘要
目前迫切需要工程化的功能组织来满足目前未得到满足的医学替代需求
或修复因疾病、损伤和先天缺陷而受损的组织和器官。生物材料
支架可以在工程组织中发挥关键作用,因为它们不仅提供机械支持和
提供生物活性分子和/或细胞,但它们也会降解,提供新的空间来支持细胞生长和
细胞外基质的产生。希望支架与新组织的速率相一致地降解
队形。支架的降解也会动态地影响其机械性能,这已被证明
调节宿主和移植细胞的行为,如扩散、增殖、迁移和分化。
尽管已经尝试预测和调整所使用的可生物降解的降解率
支架在植入之前用于特定的组织再生应用,目前很难控制其
植入后降解。以触发的方式调节支架的降解,外源或外部
已经使用了酶、pH和光等刺激。很少有人考虑将武力作为触发输入。
生物化学分子,如从宿主/移植细胞分泌的酶,已经有报道。
努力控制生物材料支架的降解率。然而,在以下方面仍然存在挑战:
以与支架降解匹配所需的速度和水平调节这些分子的产生量
具有工程化组织形成的轮廓,同时提供最小的机械支持损失。因此,
组织工程支架的力学响应对其降解的动态调节
环境可以允许智能生物材料的设计,当新形成的组织能够
支撑所需的载荷。创造机械敏感合成细胞(MSSCs)的合成生物学方法
具有机械敏感通道,用于模拟细胞动态分泌生物化学物质的能力
提出了生物材料支架对环境机械信号的响应。合成细胞是
细胞大小的脂双层囊泡包裹表达目的蛋白的无细胞表达系统。
将创建装载不同大小货物的MSSC,并使其能够在以下条件下释放有效载荷
将检查压应力(目标1)。然后将MSSCs封装在水凝胶系统中
检测外压缩应力介导的MSSCs有效载荷释放的调节能力
水凝胶降解(目标2)。最后,外压缩应力控制水凝胶的容量
将研究驱动水凝胶共包裹细胞功能的降解(目标3)。这项工作将
创造一种新型水凝胶,具有独特的机械响应机制,可动态反应
对他们的物理环境,预计将是有价值的工程广泛的组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eben Alsberg其他文献
Eben Alsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eben Alsberg', 18)}}的其他基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 18.32万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 18.32万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10570918 - 财政年份:2022
- 资助金额:
$ 18.32万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9923657 - 财政年份:2019
- 资助金额:
$ 18.32万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9899066 - 财政年份:2019
- 资助金额:
$ 18.32万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9732428 - 财政年份:2019
- 资助金额:
$ 18.32万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
9728716 - 财政年份:2019
- 资助金额:
$ 18.32万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
10263140 - 财政年份:2019
- 资助金额:
$ 18.32万 - 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
- 批准号:
9265388 - 财政年份:2016
- 资助金额:
$ 18.32万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9069425 - 财政年份:2015
- 资助金额:
$ 18.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.32万 - 项目类别:
Research Grant