Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering

用于组织工程的机械敏感合成细胞调节水凝胶

基本信息

  • 批准号:
    10570918
  • 负责人:
  • 金额:
    $ 20.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Abstract There is great need for engineered functional tissues to address currently unmet medical need for replacement or restoration of damaged tissues and organs due to disease, injury and congenital defects. Biomaterial scaffolds can play a key role in engineering tissues because they not only provide mechanical support and deliver bioactive molecules and/or cells, but they also degrade to provide new space to support cell growth and extracellular matrix production. It is desirable for the scaffold to degrade in concert with the rate of new tissue formation. Scaffold degradation also dynamically affects its mechanical properties, which has been shown to regulate host and transplanted cell behaviors, such as spreading, proliferation, migration and differentiation. Although attempts have been made to predict and tailor the degradation rate of employed biodegradable scaffolds prior to implantation for specific tissue regeneration applications, it is currently difficult to control their degradation after implantation. To regulate scaffold degradation in a triggered fashion, exogenous or external stimuli, such as enzymes, pH, and light, have been employed. Few have considered forces as a trigger input. Biochemical molecules, such as enzymes secreted from hosted/transplanted cells, have already been reported in efforts to control the degradation rate of biomaterial scaffolds. However, there are still challenges regarding regulating the production amount of those molecules at a rate and level needed to match scaffold degradation profile with engineered tissue formation while providing a minimal loss in mechanical support. Therefore, dynamic regulation of the degradation of a tissue engineering scaffold via its response to its mechanical environment may allow for design of smart biomaterials that resorb as the newly formed tissue is able to support the required loads. A synthetic biology approach to create mechanosensitive synthetic cells (MSSCs) harboring mechanosensitive channels for mimicking the ability of cells to secrete biochemicals for dynamically degrading biomaterial scaffolds in response to environment mechanical signals is proposed. Synthetic cells are cell-sized lipid bilayer vesicles encapsulating cell-free expression system expressing proteins of interest. MSSCs loaded with different sized cargos will be created and their capability to release the payloads under compressive stress will be examined (Aim 1). The MSSCs will then be encapsulated in a hydrogel system for examining the capacity of external compressive stress-mediated payload release from MSSCs to regulate hydrogel degradation (Aim 2). Lastly, the capacity of external compressive stress-controlled hydrogel degradation in driving the function of hydrogel co-encapsulated cells will be examined (Aim 3). This work will create a new class of hydrogels with a distinct mechanism of mechanoresponsiveness that dynamically react to their physical environment and are anticipated to be valuable for engineering a wide range of tissues.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eben Alsberg其他文献

Eben Alsberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eben Alsberg', 18)}}的其他基金

Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 20.04万
  • 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
  • 批准号:
    10659772
  • 财政年份:
    2023
  • 资助金额:
    $ 20.04万
  • 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
  • 批准号:
    10354662
  • 财政年份:
    2022
  • 资助金额:
    $ 20.04万
  • 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
  • 批准号:
    9923657
  • 财政年份:
    2019
  • 资助金额:
    $ 20.04万
  • 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
  • 批准号:
    9732428
  • 财政年份:
    2019
  • 资助金额:
    $ 20.04万
  • 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
  • 批准号:
    9899066
  • 财政年份:
    2019
  • 资助金额:
    $ 20.04万
  • 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
  • 批准号:
    9728716
  • 财政年份:
    2019
  • 资助金额:
    $ 20.04万
  • 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
  • 批准号:
    10263140
  • 财政年份:
    2019
  • 资助金额:
    $ 20.04万
  • 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
  • 批准号:
    9265388
  • 财政年份:
    2016
  • 资助金额:
    $ 20.04万
  • 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
  • 批准号:
    9069425
  • 财政年份:
    2015
  • 资助金额:
    $ 20.04万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了