Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
基本信息
- 批准号:10570918
- 负责人:
- 金额:$ 20.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAlginatesAutomobile DrivingBiochemicalBiocompatible MaterialsBiologyCalciumCartilageCell ProliferationCell SizeCell SurvivalCell TransplantationCell physiologyCellsChelating AgentsCongenital AbnormalityCoupledCuesDefectDevelopmentDextransDiseaseDyesElementsEncapsulatedEngineeringEnvironmentEnzymesExtracellular MatrixFluorescenceFluorescence MicroscopyGlutathioneHumanHydrogelsInjuryLightLipid BilayersMechanical StressMechanicsMediatingMedicalMembraneMesenchymal Stem CellsMetalloproteasesMicrofluidicsModelingOrganOsmolar ConcentrationPhysical ChemistryPhysical environmentPlayProcessProductionProliferatingPropertyProteinsReactionReaderRegulationReportingResearchRheologyRhodamineRoleStimulusStressSupporting CellSwellingSystemTechnologyTestingTherapeuticThinnessTimeTissue EngineeringTissuesVesicleWorkbiodegradable scaffoldbiomaterial compatibilitybioscaffoldbonecell behaviorcell growthconstrictioncrosslinkdesigndisulfide bondexperienceextracellularhealingimplantationimprovedin vivoinhibitorinterestmechanical forcemechanical propertiesmechanical signalmechanical stimulusmechanotransductionmigrationphysical propertyphysical staterelease factorrepairedreplacement tissueresponserestorationscaffoldsensorspatiotemporalsynthetic biologytissue regeneration
项目摘要
Abstract
There is great need for engineered functional tissues to address currently unmet medical need for replacement
or restoration of damaged tissues and organs due to disease, injury and congenital defects. Biomaterial
scaffolds can play a key role in engineering tissues because they not only provide mechanical support and
deliver bioactive molecules and/or cells, but they also degrade to provide new space to support cell growth and
extracellular matrix production. It is desirable for the scaffold to degrade in concert with the rate of new tissue
formation. Scaffold degradation also dynamically affects its mechanical properties, which has been shown to
regulate host and transplanted cell behaviors, such as spreading, proliferation, migration and differentiation.
Although attempts have been made to predict and tailor the degradation rate of employed biodegradable
scaffolds prior to implantation for specific tissue regeneration applications, it is currently difficult to control their
degradation after implantation. To regulate scaffold degradation in a triggered fashion, exogenous or external
stimuli, such as enzymes, pH, and light, have been employed. Few have considered forces as a trigger input.
Biochemical molecules, such as enzymes secreted from hosted/transplanted cells, have already been reported
in efforts to control the degradation rate of biomaterial scaffolds. However, there are still challenges regarding
regulating the production amount of those molecules at a rate and level needed to match scaffold degradation
profile with engineered tissue formation while providing a minimal loss in mechanical support. Therefore,
dynamic regulation of the degradation of a tissue engineering scaffold via its response to its mechanical
environment may allow for design of smart biomaterials that resorb as the newly formed tissue is able to
support the required loads. A synthetic biology approach to create mechanosensitive synthetic cells (MSSCs)
harboring mechanosensitive channels for mimicking the ability of cells to secrete biochemicals for dynamically
degrading biomaterial scaffolds in response to environment mechanical signals is proposed. Synthetic cells are
cell-sized lipid bilayer vesicles encapsulating cell-free expression system expressing proteins of interest.
MSSCs loaded with different sized cargos will be created and their capability to release the payloads under
compressive stress will be examined (Aim 1). The MSSCs will then be encapsulated in a hydrogel system for
examining the capacity of external compressive stress-mediated payload release from MSSCs to regulate
hydrogel degradation (Aim 2). Lastly, the capacity of external compressive stress-controlled hydrogel
degradation in driving the function of hydrogel co-encapsulated cells will be examined (Aim 3). This work will
create a new class of hydrogels with a distinct mechanism of mechanoresponsiveness that dynamically react
to their physical environment and are anticipated to be valuable for engineering a wide range of tissues.
抽象的
工程功能组织非常需要解决目前未满足的医疗需求
或由于疾病,损伤和先天性缺陷而导致的组织和器官恢复。生物材料
脚手架可以在工程组织中发挥关键作用,因为它们不仅提供机械支撑和
提供生物活性分子和/或细胞,但它们也降解以提供新的空间来支持细胞生长和
细胞外基质产生。希望脚手架与新组织的速度一起降解
形成。脚手架降解也会动态影响其机械性能,这已被证明
调节宿主和移植细胞行为,例如扩散,增殖,迁移和分化。
尽管已经尝试预测和量身定制可生物降解的降解率
在植入之前进行特定组织再生应用的脚手架,目前很难控制其
植入后退化。以触发的方式,外源或外部调节脚手架退化
已经采用了酶,pH和光的刺激。很少有人将力视为触发输入。
已经报道了生化分子,例如托管/移植细胞分泌的酶
为了控制生物材料支架的降解率。但是,关于
以匹配支架降解所需的速率和水平来调节这些分子的生产量
具有工程组织形成的剖面,同时提供了机械支撑的最小损失。所以,
组织工程支架降解的动态调节通过其对机械的响应
环境可能允许设计智能生物材料,作为新形成的组织能够吸收智能生物材料
支持所需的负载。一种创建机械敏感合成细胞(MSSC)的合成生物学方法
携带机械敏感的通道,以模仿细胞分泌生化物的能力
提出了响应环境机械信号的生物材料支架的降解。合成细胞是
细胞大小的脂质双层囊泡封装了无细胞表达系统,表达感兴趣的蛋白质。
将创建装有不同尺寸的磅的MSSC,并将其释放有效载荷的能力
将检查压力应力(AIM 1)。然后,MSSC将封装在水凝胶系统中
检查来自MSSC的外部压力介导的有效载荷释放的能力以调节
水凝胶降解(AIM 2)。最后,外部压缩应力控制水凝胶的能力
将检查驱动水凝胶共同封装细胞功能的降解(AIM 3)。这项工作将
创建一种新的水凝胶,具有不同的机械回应机制,可以动态反应
到他们的物理环境,预计将对工程多种组织有价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eben Alsberg其他文献
Eben Alsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eben Alsberg', 18)}}的其他基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10354662 - 财政年份:2022
- 资助金额:
$ 20.04万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9923657 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9899066 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9732428 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
9728716 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
10263140 - 财政年份:2019
- 资助金额:
$ 20.04万 - 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
- 批准号:
9265388 - 财政年份:2016
- 资助金额:
$ 20.04万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9069425 - 财政年份:2015
- 资助金额:
$ 20.04万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Promoting Caregiver Implementation of an Effective Early Learning Intervention
促进看护者实施有效的早期学习干预
- 批准号:
10636211 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别: