Molecular Mechanisms of Channels and Transporters
通道和转运蛋白的分子机制
基本信息
- 批准号:10204502
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Active Biological TransportAddressAllosteric RegulationAntibioticsBindingBiochemicalBiologicalBiological AssayBiological ModelsBiological ProcessBiophysicsChemicalsCoupledDataEnvironmentIn VitroIntegral Membrane ProteinIon ChannelIonsKineticsKnowledgeLengthMembraneMembrane ProteinsModelingMolecularMolecular ProbesMonitorMotionMovementNMR SpectroscopyPopulationProcessProtein ConformationProteinsProtonsPumpResearchResolutionSiteSpecificityStructureSystemTemperature SenseThermodynamicsTimeWorkin vivoinsightprotein functionsmall moleculetool
项目摘要
ABSTRACT
Knowledge of protein motion is necessary to bridge the gap between structure and function and gain insight
into the molecular mechanism of protein machines. My lab studies the function of ion channels and ion-coupled
transporters, integral membrane proteins that must undergo structural transitions to regulate the flow of ions
(channels) or actively pump substrates (transporters) across biological membrane barriers. A set of distinct but
interrelated projects examines the mechanism of secondary active transport, promiscuous multidrug
recognition, ion channel selectivity and gating, molecular basis of temperature sensing, allosteric regulation of
transporter and channel activity, and how small localized interactions can regulate broader dynamics in
membrane proteins. These research questions span time- and length- scales, requiring an array of
experimental approaches and a well-developed set of model systems to enable hypothesis driven research.
One of our primary tools is NMR spectroscopy, which can simultaneously provide structural, thermodynamic
(populations), and kinetic (rates of transitions) data with site-specific resolution. NMR chemical shifts are also
highly sensitive to changes in the local environment, providing a direct readout of proton binding, a process
that is otherwise difficult to monitor experimentally but central to dissecting proton-coupled transport. Over the
past 10 years, my lab has done the painstaking work necessary to develop three completely independent
model transporter and channel systems (EmrE, NaK, Shaker-VSD) and establish experimental tools ranging
from NMR and molecular biophysics to in vitro and in vivo functional assays. We are now primed to address
essential research questions that probe the molecular mechanism of these specific systems but also have
broader implications for understanding how protein conformational change is regulated, promiscuity versus
specificity in substrate recognition, the complexity of proton-coupled transport, and molecular basis for
allosteric regulation of protein function.
摘要
蛋白质运动的知识对于弥合结构和功能之间的差距和获得洞察力是必要的
蛋白质机器的分子机制。我的实验室研究离子通道和离子偶联的功能
转运蛋白,必须经历结构转换才能调节离子流动的完整的膜蛋白
(通道)或主动泵送底物(转运体)越过生物膜屏障。一组截然不同但
相关项目检查二次主动转运、混杂多药的机制
识别,离子通道选择性和门控,温度传感的分子基础,变构调节
转运体和通道活动,以及小的局部交互如何调节更广泛的动态
膜蛋白。这些研究问题跨越时间和长度尺度,需要一系列
实验方法和一套完善的模型系统,使假设驱动的研究成为可能。
我们的主要工具之一是核磁共振波谱,它可以同时提供结构、热力学
(种群)和具有特定站点分辨率的动力学(转换率)数据。核磁共振化学位移也是
对当地环境的变化高度敏感,提供质子结合的直接读数,这是一个过程
这在其他方面很难通过实验进行监测,但却是剖析质子耦合输运的核心。超过了
在过去的10年里,我的实验室做了必要的艰苦工作,开发出了三个完全独立的
建立传输器和渠道系统模型(EMRE、NAK、Shaker-VSD)并建立实验工具范围
从核磁共振和分子生物物理学到体外和体内功能分析。我们现在已经准备好解决
探索这些特定系统的分子机制的基本研究问题,但也有
对理解蛋白质构象变化如何调控的更广泛的影响,混杂与
底物识别的特异性,质子耦合传输的复杂性,以及
蛋白质功能的变构调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Anne Henzler-Wildman其他文献
Katherine Anne Henzler-Wildman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Anne Henzler-Wildman', 18)}}的其他基金
Expanding the Scope of NMR Sample Preparation
扩大 NMR 样品制备的范围
- 批准号:
10089600 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
Expanding the Scope of NMR Sample Preparation
扩大 NMR 样品制备的范围
- 批准号:
10573324 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
NMR Technologies for Integrating Structure, Function and Disease
整合结构、功能和疾病的 NMR 技术
- 批准号:
10089598 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
Molecular Mechanisms of Channels and Transporters
通道和转运蛋白的分子机制
- 批准号:
10608951 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
NMR Technologies for Integrating Structure, Function and Disease
整合结构、功能和疾病的 NMR 技术
- 批准号:
10323282 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
Expanding the Scope of NMR Sample Preparation
扩大 NMR 样品制备的范围
- 批准号:
10323284 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
Molecular Mechanisms of Channels and Transporters
通道和转运蛋白的分子机制
- 批准号:
10394922 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
NMR Technologies for Integrating Structure, Function and Disease
整合结构、功能和疾病的 NMR 技术
- 批准号:
10573321 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
CONFORMATIONAL DYNAMICS IN ION CHANNEL SELECTIVITY AND GATING
离子通道选择性和门控中的构象动力学
- 批准号:
8945932 - 财政年份:2015
- 资助金额:
$ 38.23万 - 项目类别:
CONFORMATIONAL DYNAMICS IN ION CHANNEL SELECTIVITY AND GATING
离子通道选择性和门控中的构象动力学
- 批准号:
9133430 - 财政年份:2015
- 资助金额:
$ 38.23万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Research Grant