TR&D Project 3: Virtual Readers
TR
基本信息
- 批准号:10372911
- 负责人:
- 金额:$ 31.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAnatomyArtificial IntelligenceBenchmarkingCategoriesClassificationClinicalClinical DataClinical TrialsCommunitiesComplexComputer AssistedDataData ScienceData SetDatabasesDetectionDevelopmentDiseaseEducationElementsEnsureEvaluationFutureHumanImageImage AnalysisImaging PhantomsImaging technologyInstitutionIonizing radiationLesionMachine LearningManufacturer NameMathematicsMeasurementMeasuresMedicalMedical ImagingModalityModelingMorphologyPatientsPerceptionPerformancePhaseProtocols documentationRadiation Dose UnitReaderReadingReproducibilityResearchResource DevelopmentResourcesScientistSpeedSystemTechnologyTechnology AssessmentTestingTextureTrainingTranscendTranslatingUncertaintyVariantWorkX-Ray Computed Tomographyartificial intelligence algorithmbasebeneficiarybiomedical imagingclinical imagingcomparativedeep learningdeep learning modeldesigndisease diagnosisexperienceimaging scienceindexinginteroperabilitymachine learning modelmembermodel designopen dataquantitative imagingradiologistradiomicsresearch clinical testingtechnology developmenttechnology research and developmenttooltrendvirtualvirtual imagingvirtual patientvirtual platform
项目摘要
ABSTRACT – TRD3: Virtual Readers
The Center proposes virtual imaging trials (VITs), a new paradigm to evaluate rapidly advancing imaging
technologies, including computed tomography (CT). VITs offer a computational alternative to the evaluation of
these technologies through clinical trials, which are slow, expensive, and often lack ground truth, while
exposing subjects to ionizing radiation. The Center will develop a VIT platform to emulate key elements of the
imaging chain from virtual patients (TRD1) to virtual scanners (TRD2) to virtual readers (TRD3). The virtual
reader, the focus of this TRD, are defined as image analysis tools that emulate and extend the clinical reading
of images for specific tasks or needs such as lesion detection, classification, or measurement. Specifically, the
virtual readers comprise three representative categories: observer models, radiomics, and machine learning.
Virtual readers can efficiently and effectively analyze the vast amounts of data in imaging trials, be they clinical
or simulated. To date, most virtual reader approaches have been limited by their narrow focus, uncertainty of
ground truth (normal anatomy and disease), or lack of interoperability. As a result, these technologies have not
yet been translated broadly. To address this unmet need, TRD3 will codify a suite of easy-to-use virtual reader
tools to enable not only VITs but also a wide range of other medical image evaluation needs.
This work will proceed in three Specific Aims: (1) implement an observer model and radiomics toolset for task-
based assessment of CT images, (2) create deep learning resources for analysis and processing of CT
images, and (3) integrate virtual reader utilities into a unified VIT platform and validate it against studies with
real images and radiologists. While TRD3 focuses primarily on virtual readers, as the final technology
development project of the Center, it will also validate Center resources as a whole.
The deliverables of TRD3 include the following: (1) virtual reader tools that go beyond niche applications and
generalize to different subjects, systems, and tasks; (2) performance assessment that is informed by
controllable ground truth for both normal anatomy and disease; (3) “estimability index” to assess bias and
precision of virtual reader metrics; (4) machine learning tools that perform disease detection and classification
as well as data augmentation, all of which are crucial to VITs; (5) resources for medical imaging that transcend
VITs with applications including clinical evaluation and education, and (6) benchmark databases and
performance levels that facilitate a culture of open science where technology assessment becomes fair and
reproducible. TRD3 will have a significant impact on clinical imaging science and practice by not only enabling
effective ways of evaluating imaging technology but also spurring new developments in data science for
medical imaging. The virtual reader resources combined with myriad clinical and simulated image data of the
Center will provide the essential framework to enable VITs in CT imaging and beyond.
TRD3:虚拟阅读器
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH Y LO其他文献
JOSEPH Y LO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH Y LO', 18)}}的其他基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 31.44万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7096059 - 财政年份:2006
- 资助金额:
$ 31.44万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7390660 - 财政年份:2006
- 资助金额:
$ 31.44万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7591041 - 财政年份:2006
- 资助金额:
$ 31.44万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7248669 - 财政年份:2006
- 资助金额:
$ 31.44万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6417326 - 财政年份:2002
- 资助金额:
$ 31.44万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6620433 - 财政年份:2002
- 资助金额:
$ 31.44万 - 项目类别:
Improved diagnosis of breast microcalcification clusters
改进乳腺微钙化簇的诊断
- 批准号:
6515215 - 财政年份:2001
- 资助金额:
$ 31.44万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.44万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 31.44万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 31.44万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 31.44万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 31.44万 - 项目类别:
Standard Grant














{{item.name}}会员




