TR&D Project 3: Virtual Readers

TR

基本信息

  • 批准号:
    10372911
  • 负责人:
  • 金额:
    $ 31.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT – TRD3: Virtual Readers The Center proposes virtual imaging trials (VITs), a new paradigm to evaluate rapidly advancing imaging technologies, including computed tomography (CT). VITs offer a computational alternative to the evaluation of these technologies through clinical trials, which are slow, expensive, and often lack ground truth, while exposing subjects to ionizing radiation. The Center will develop a VIT platform to emulate key elements of the imaging chain from virtual patients (TRD1) to virtual scanners (TRD2) to virtual readers (TRD3). The virtual reader, the focus of this TRD, are defined as image analysis tools that emulate and extend the clinical reading of images for specific tasks or needs such as lesion detection, classification, or measurement. Specifically, the virtual readers comprise three representative categories: observer models, radiomics, and machine learning. Virtual readers can efficiently and effectively analyze the vast amounts of data in imaging trials, be they clinical or simulated. To date, most virtual reader approaches have been limited by their narrow focus, uncertainty of ground truth (normal anatomy and disease), or lack of interoperability. As a result, these technologies have not yet been translated broadly. To address this unmet need, TRD3 will codify a suite of easy-to-use virtual reader tools to enable not only VITs but also a wide range of other medical image evaluation needs. This work will proceed in three Specific Aims: (1) implement an observer model and radiomics toolset for task- based assessment of CT images, (2) create deep learning resources for analysis and processing of CT images, and (3) integrate virtual reader utilities into a unified VIT platform and validate it against studies with real images and radiologists. While TRD3 focuses primarily on virtual readers, as the final technology development project of the Center, it will also validate Center resources as a whole. The deliverables of TRD3 include the following: (1) virtual reader tools that go beyond niche applications and generalize to different subjects, systems, and tasks; (2) performance assessment that is informed by controllable ground truth for both normal anatomy and disease; (3) “estimability index” to assess bias and precision of virtual reader metrics; (4) machine learning tools that perform disease detection and classification as well as data augmentation, all of which are crucial to VITs; (5) resources for medical imaging that transcend VITs with applications including clinical evaluation and education, and (6) benchmark databases and performance levels that facilitate a culture of open science where technology assessment becomes fair and reproducible. TRD3 will have a significant impact on clinical imaging science and practice by not only enabling effective ways of evaluating imaging technology but also spurring new developments in data science for medical imaging. The virtual reader resources combined with myriad clinical and simulated image data of the Center will provide the essential framework to enable VITs in CT imaging and beyond.
摘要-TRD3:虚拟读者 该中心提出了虚拟成像试验(VITs),这是一种评估快速发展的成像的新范式 技术,包括计算机断层扫描(CT)。VITS提供了一种替代评估的计算方法 这些技术通过临床试验进行,这些试验缓慢、昂贵,而且往往缺乏现成的事实,而 使受试者暴露在电离辐射中。该中心将开发一个VIT平台,以模拟 从虚拟患者(TRD1)到虚拟扫描仪(TRD2)再到虚拟阅读器(TRD3)的影像链。虚拟的 Reader是TRD的重点,它被定义为模拟和扩展临床阅读的图像分析工具 用于特定任务或需求的图像,例如病变检测、分类或测量。具体地说, 虚拟阅读器包括三个具有代表性的类别:观察者模型、放射组学和机器学习。 虚拟阅读器可以高效、有效地分析成像试验中的海量数据,无论是临床试验 或者是模拟的。到目前为止,大多数虚拟阅读器方法都受到其狭窄的关注范围、不确定性 基本事实(正常解剖和疾病),或缺乏互操作性。因此,这些技术并没有 然而却被广泛地翻译。为了解决这一未得到满足的需求,TRD3将编写一套易于使用的虚拟阅读器 不仅支持VITS,还支持广泛的其他医学图像评估需求的工具。 这项工作将以三个具体目标进行:(1)为任务实施观察者模型和放射组学工具包-- 基于CT图像的评估,(2)创建用于CT分析和处理的深度学习资源 图像,以及(3)将虚拟读卡器实用程序集成到统一的VIT平台中,并针对研究进行验证 真实的影像和放射科医生。而TRD3主要专注于虚拟阅读器,作为最终的技术 中心的发展项目,也将从整体上验证中心的资源。 TRD3的交付成果包括:(1)超越利基应用程序和 概括到不同的主题、系统和任务;(2)由以下人员提供信息的绩效评估 对于正常解剖和疾病都是可控的基础事实;(3)评估偏差和 虚拟阅读器指标的精度;(4)执行疾病检测和分类的机器学习工具 以及数据增强,所有这些都对VIT至关重要;(5)超越 VITS,其应用包括临床评估和教育,以及(6)基准数据库和 促进开放科学文化的绩效水平,在这种文化中,技术评估变得公平和 可重现的。TRD3将对临床影像科学和实践产生重大影响,不仅使 评估成像技术的有效方法,同时也刺激数据科学的新发展 医学成像。虚拟阅读器资源结合了无数的临床和模拟图像数据 中心将提供必要的框架,使VITs能够进行CT成像和其他方面的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH Y LO其他文献

JOSEPH Y LO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH Y LO', 18)}}的其他基金

Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
  • 批准号:
    10585553
  • 财政年份:
    2023
  • 资助金额:
    $ 31.44万
  • 项目类别:
TR&D Project 3: Virtual Readers
TR
  • 批准号:
    10551846
  • 财政年份:
    2021
  • 资助金额:
    $ 31.44万
  • 项目类别:
TR&D Project 3: Virtual Readers
TR
  • 批准号:
    10089804
  • 财政年份:
    2021
  • 资助金额:
    $ 31.44万
  • 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
  • 批准号:
    7096059
  • 财政年份:
    2006
  • 资助金额:
    $ 31.44万
  • 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
  • 批准号:
    7390660
  • 财政年份:
    2006
  • 资助金额:
    $ 31.44万
  • 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
  • 批准号:
    7591041
  • 财政年份:
    2006
  • 资助金额:
    $ 31.44万
  • 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
  • 批准号:
    7248669
  • 财政年份:
    2006
  • 资助金额:
    $ 31.44万
  • 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
  • 批准号:
    6417326
  • 财政年份:
    2002
  • 资助金额:
    $ 31.44万
  • 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
  • 批准号:
    6620433
  • 财政年份:
    2002
  • 资助金额:
    $ 31.44万
  • 项目类别:
Improved diagnosis of breast microcalcification clusters
改进乳腺微钙化簇的诊断
  • 批准号:
    6515215
  • 财政年份:
    2001
  • 资助金额:
    $ 31.44万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 31.44万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 31.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 31.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.44万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 31.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.44万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 31.44万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 31.44万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 31.44万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 31.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了