Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
基本信息
- 批准号:7390660
- 负责人:
- 金额:$ 33.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-20 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAlgorithmsAreaBiopsyBreastBreast Cancer DetectionCancer DetectionCharacteristicsChestClinicalClinical ResearchClinical TrialsComputer AssistedDataDetectionDigital MammographyEvaluationGoalsGrowthImageLesionMalignant NeoplasmsMammary Gland ParenchymaMammographyManufacturer NameMass in breastMastectomyModalityMonitorNoiseOutputPatientsPerformancePilot ProjectsProductivityPurposeROC CurveResearch PersonnelScanningScreening procedureSensitivity and SpecificitySignal TransductionSliceSpecificitySpecimenSystemTechniquesTissuesTrainingTranslatingTranslationsbasedesigndigitalexperiencegraphical user interfaceimprovedinterestnovelprospectiveradiologistreconstructiontool
项目摘要
The purpose of this study is to investigate tomosynthesis mammography to improve the sensitivity
and specificity of breast cancer detection. By removing overlapping tissue, this system can allow
detection of obscured lesions and permit better 3D characterization of lesions.
The specific aims of the proposed study are to:
(1) Optimize tomosynthesis technique using specimen and patient images.
(2) Implement soft-copy display system for tomosynthesis images and CAD outputs to maximize
radiologist productivity and performance.
(3) Perform prospective pilot studies to evaluate radiologist performance with breast tomosynthesis.
(4) Investigate CAD of breast masses as an integral component of breast tomosynthesis.
In preliminary studies, we evaluated the physical characteristics of an investigational digital
mammography system modified for tomosynthesis scanning, and optimized the radiographic
technique for tomosynthesis. We translated our experience with chest tomosynthesis into
mammography, and demonstrated feasibility of our reconstruction algorithm on phantoms,
mastectomy specimens, and patients. We developed novel CAD algorithms for the detection of breast
masses in mammography, and will parlay that experience into the 3D tomosynthesis data.
This proposal presents a complete plan to demonstrate physical and clinical feasibility. Upon the
successful completion of each aim, the immediate benefit will be crucial information which will
facilitate commercial translation of this breast tomosynthesis system by our industrial partner, as well
as the evaluation of similar systems from other academic groups and manufacturers.
本研究的目的是探讨乳腺断层合成摄影,以提高灵敏度
和乳腺癌检测的特异性。通过去除重叠的组织,该系统可以允许
检测模糊的病变,并允许更好的病变的3D表征。
拟议研究的具体目标是:
(1)使用标本和患者图像优化断层合成技术。
(2)实施断层合成图像和CAD输出的软拷贝显示系统,
放射科医生的生产力和性能。
(3)进行前瞻性初步研究,以评价放射科医师使用乳腺断层合成摄影的表现。
(4)研究乳腺肿块的CAD作为乳腺断层合成摄影的组成部分。
在初步研究中,我们评估了一个调查数字的物理特性,
乳腺X射线摄影系统修改为断层合成扫描,并优化了射线照相
断层合成技术。我们将胸部断层合成的经验转化为
乳房X线摄影,并证明了我们的重建算法的可行性,
乳房切除标本和病人我们开发了新的CAD算法检测乳房
在乳腺X射线摄影中,我们可以将这些经验转化为3D断层合成数据。
本提案提出了一个完整的计划,以证明物理和临床可行性。于
成功完成每一个目标,直接的好处将是至关重要的信息,
同时,我们的工业合作伙伴也将促进该乳腺断层合成系统的商业化,
作为对其他学术团体和制造商的类似系统的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH Y LO其他文献
JOSEPH Y LO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH Y LO', 18)}}的其他基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 33.76万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7096059 - 财政年份:2006
- 资助金额:
$ 33.76万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7591041 - 财政年份:2006
- 资助金额:
$ 33.76万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7248669 - 财政年份:2006
- 资助金额:
$ 33.76万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6417326 - 财政年份:2002
- 资助金额:
$ 33.76万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6620433 - 财政年份:2002
- 资助金额:
$ 33.76万 - 项目类别:
Improved diagnosis of breast microcalcification clusters
改进乳腺微钙化簇的诊断
- 批准号:
6515215 - 财政年份:2001
- 资助金额:
$ 33.76万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 33.76万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 33.76万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 33.76万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 33.76万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 33.76万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 33.76万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 33.76万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant














{{item.name}}会员




