Hybrid Methods for Dynamic Structure Analysis of Proteins from Pathogenic Microorganisms
病原微生物蛋白质动态结构分析的混合方法
基本信息
- 批准号:10205615
- 负责人:
- 金额:$ 65.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAffinityAntibioticsAntiviral AgentsAttenuated Live Virus VaccineBindingBiological AssayBiologyCOVID-19 therapeuticsCommunitiesComplexCoronavirusDataDockingDrug TargetingElectronsEnvironmentEnzyme KineticsEscherichia coliFDA approvedFluorescence Resonance Energy TransferGammaretrovirusGenesGenomeHepatitis C virusHomeostasisHumanHybridsInfluenzaInnate Immune ResponseIntegral Membrane ProteinIntegraseIsotopesKlebsiella pneumoniaeLeadMediatingMedical ResearchMembraneMethodsModelingMolecular ConformationMoloney Leukemia VirusNonstructural ProteinPathogenicityPeptide HydrolasesPharmaceutical PreparationsPlayProbabilityProtease InhibitorProtein AnalysisProteinsPseudomonas aeruginosaRNAReproducibilityResearch Project SummariesRoentgen RaysRoleSH2D3C geneSpecificitySpectrum AnalysisStructureSystemTechnologyUnited States National Institutes of HealthVariantViralVirusVirus ReplicationX-Ray Crystallographybiophysical chemistrycost effectivedesigndrug discoveryflexibilityhuman pathogeninfluenza infectioninfluenzavirusinnovationinsightmicroorganismnovelnovel therapeuticspathogenic bacteriapriority pathogenprogramsprotein structure predictionreceptorreconstitutiontherapeutic developmentvaccine development
项目摘要
PROJECT SUMMARY
This research program will investigate the general hypothesis that understanding the conformational diversity
of proteins will provide new insights into their biology, and enable medical research. It is directed to two
classes of systems: Integral Membrane Proteins (IMPs) and viral-host interactions. IMPs play critical roles as
gate keepers, receptors, transporters, homeostasis regulators, and drug targets. These functions are mediated
by the conformational plasticity of the IMP in the membrane environment. IMPs are challenging to prepare, and
even more challenging to reconstitute in appropriate membrane mimicking environments. Cost-effective
technologies for isotope-enrichment in condensed volumes, hybrid approaches combining NMR with
evolutionary co-variation (ECs), novel methods of contact prediction, and innovative modeling methods from
the protein structure prediction community, will be applied to structure-function studies of IMPs. These IMPs,
chosen from important human pathogens, including E. coli, K. pneumoniae, and P. aeruginosa, are potential
targets for antibiotic discovery. ECs will also be combined with NMR data to determine structures of multiple
“native states” of proteins. The second component of our program is directed to viral – host biomolecular
complexes, and antiviral drug discovery. We will utilize innovative paramagnetic NMR methods, together with
small angle X-ray scattering (SAXS), electron-electron double resonance spectroscopy (DEER), and Förster
resonance energy transfer (FRET), to rigorously define dynamic interdomain structural distributions conferred
by the partially-ordered linkers of the murine Moloney Leukemia Virus (MLV) integrase (IN). These data will be
interpreted in the context of maximum occupancy probabilities (MaxOcc), and used to probe the role(s) of this
flexibility in the gene integration mechanisms of g-retroviruses. Interdomain linkers also function to provide
flexibility needed for binding partner promiscuity. We will also determine how the interdomain linker sequences
of influenza Non-Structural Protein 1 (NS1) confer appropriate plasticity to define its specificity and affinity for
host proteins and RNAs. This structural and functional promiscuity underlies NS1’s mechanisms for
suppressing the cellular innate immune response to influenza infection, and rigorous characterization of its
dynamic structural basis will provide fundamental information for live-attenuated virus vaccine development.
We will also apply our platform to investigate drugs that inhibit SARS-CoV2 virus by binding its main protease
(Mpro). We have identified three drugs, already approved for use in humans, originally designed to inhibit the
NSP3/4A protease of hepatitis C virus, that also inhibit SARS-CoV2 in viral replication assays at low
micromolar concentrations. Our computational docking studies have also identified several other FDA-
approved drugs that may inhibit Mpro. Enzyme kinetic, biophysical chemistry, and X-ray crystallography studies
will be used to characterize complexes formed between these protease inhibitor drugs and Mpro, and to
develop their potential as COVID-19 therapeutics, or as lead compounds for new therapeutic development.
项目摘要
本研究计划将探讨一般假设,了解构象多样性
蛋白质的研究将为它们的生物学提供新的见解,并使医学研究成为可能。它是针对两个
系统分类:整合膜蛋白(IMP)和病毒-宿主相互作用。IMP发挥着关键作用,
看门人、受体、转运蛋白、体内平衡调节剂和药物靶点。这些功能是通过
IMP在膜环境中的构象可塑性。IMP的制备具有挑战性,并且
在适当的膜模拟环境中重构甚至更具挑战性。成本效益
浓缩体积中同位素富集的技术,NMR与
进化协变(EC),接触预测的新方法,以及创新的建模方法,
蛋白质结构预测社区,将被应用于结构功能研究的IMP。这些IMP,
选自重要的人类病原体,包括E. coli,K.肺炎,和铜绿假单胞菌,是潜在的
抗生素发现的目标。EC还将与NMR数据相结合,以确定多种化合物的结构。
蛋白质的“自然状态”。我们计划的第二部分是针对病毒宿主生物分子
复合物和抗病毒药物发现。我们将利用创新的顺磁NMR方法,
小角X射线散射(SAXS)、电子-电子双共振光谱(DEER)和Förster
共振能量转移(FRET),严格定义动态域间结构分布赋予
通过鼠莫洛尼白血病病毒(MLV)整合酶(IN)的部分有序接头。这些数据将
在最大占用概率(MaxOcc)的上下文中解释,并用于探测此
G-逆转录病毒基因整合机制的灵活性。结构域间接头还起到提供
约束伴侣滥交所需的灵活性。我们还将确定结构域间连接序列
流感病毒非结构蛋白1(NS 1)的表达赋予了适当的可塑性,以确定其特异性和亲和力,
宿主蛋白和RNA。这种结构和功能混杂是NS 1的机制的基础,
抑制对流感感染的细胞先天免疫应答,并对其进行严格表征。
动态结构基础将为减毒活病毒疫苗的研制提供基础信息。
我们还将利用我们的平台研究通过结合SARS-CoV 2病毒的主要蛋白酶来抑制其的药物
(Mpro)。我们已经确定了三种药物,已经被批准用于人类,最初是为了抑制
丙型肝炎病毒的NSP 3/4A蛋白酶,在病毒复制试验中也能在低浓度下抑制SARS-CoV 2,
微摩尔浓度。我们的计算对接研究还确定了其他几个FDA-
可能抑制Mpro的批准药物。酶动力学、生物物理化学和X射线晶体学研究
将用于表征这些蛋白酶抑制剂药物和Mpro之间形成的复合物,
开发其作为COVID-19治疗剂或作为新治疗开发的先导化合物的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAETANO T MONTELIONE其他文献
GAETANO T MONTELIONE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAETANO T MONTELIONE', 18)}}的其他基金
Hybrid Methods for Dynamic Structure Analysis of Proteins from Pathogenic Microorganisms
病原微生物蛋白质动态结构分析的混合方法
- 批准号:
10418703 - 财政年份:2021
- 资助金额:
$ 65.8万 - 项目类别:
Hybrid Methods for Dynamic Structure Analysis of Proteins from Pathogenic Microorganisms
病原微生物蛋白质动态结构分析的混合方法
- 批准号:
10615157 - 财政年份:2021
- 资助金额:
$ 65.8万 - 项目类别:
Membrane Protein Structure Using Evolutionary Couplings and Sparse NMR Data
使用进化耦合和稀疏 NMR 数据的膜蛋白结构
- 批准号:
9383967 - 财政年份:2017
- 资助金额:
$ 65.8万 - 项目类别:
Membrane Protein Structure Using Evolutionary Couplings and Sparse NMR Data
使用进化耦合和稀疏 NMR 数据的膜蛋白结构
- 批准号:
10074763 - 财政年份:2017
- 资助金额:
$ 65.8万 - 项目类别:
Membrane Protein Structure Using Evolutionary Couplings and Sparse NMR Data
使用进化耦合和稀疏 NMR 数据的膜蛋白结构
- 批准号:
9978825 - 财政年份:2017
- 资助金额:
$ 65.8万 - 项目类别:
A Novel RNA Recognition Site on the Influenza B Virus NS1 Protein
乙型流感病毒 NS1 蛋白的新 RNA 识别位点
- 批准号:
8991480 - 财政年份:2015
- 资助金额:
$ 65.8万 - 项目类别:
600 MHZ NMR RF Console with 19F NMR Probe
带 19F NMR 探头的 600 MHZ NMR RF 控制台
- 批准号:
8640245 - 财政年份:2014
- 资助金额:
$ 65.8万 - 项目类别:
Structural Genomics of Eukaryotic Domain Families
真核域家族的结构基因组学
- 批准号:
8287754 - 财政年份:2010
- 资助金额:
$ 65.8万 - 项目类别:
Structural Genomics of Eukaryotic Domain Families
真核域家族的结构基因组学
- 批准号:
8255665 - 财政年份:2010
- 资助金额:
$ 65.8万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 65.8万 - 项目类别:
Continuing Grant