Membrane Protein Structure Using Evolutionary Couplings and Sparse NMR Data
使用进化耦合和稀疏 NMR 数据的膜蛋白结构
基本信息
- 批准号:9383967
- 负责人:
- 金额:$ 51.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesAlgorithmic SoftwareAlgorithmsAntibioticsBase SequenceBenchmarkingBinding ProteinsBioinformaticsBiologicalComplexComputing MethodologiesCouplingCryoelectron MicroscopyDataData QualityDetergentsDimensionsDimerizationElectron MicroscopyEnsureEnvironmentEnzymesEquilibriumEscherichia coliFutureGenomeGoalsHomeostasisHybridsIntegral Membrane ProteinIsotope LabelingIsotopesLigand BindingLipoproteinsLiteratureMembraneMembrane ProteinsMethodsMicellesModelingMolecular ConformationMolecular ModelsMulti-Drug ResistanceMutationNOESYNational Institute of Allergy and Infectious DiseaseNuclear Magnetic ResonancePhylogenetic AnalysisPreparationProductionProgram DevelopmentProteinsProtocols documentationReproducibilityResearchResolutionResourcesSamplingSequence AlignmentStructureSystemTestingTimeUnited States National Institutes of HealthValidationX-Ray Crystallographybiodefensecryogenicsdesigndimerdrug developmentdrug discoveryimprovedinnovationmaltose-binding proteinmethod developmentmolecular modelingnanodiskpathogenpathogenic bacteriaperiplasmprogramsprotein reconstitutionprotein structurereceptorscreeningsolid state nuclear magnetic resonancestructural biologysuccessthree dimensional structurethree-dimensional modelingtool
项目摘要
PROJECT SUMMARY
Integral Membrane Proteins (IMPs) include many biomedically-important gate keepers, receptors,
transporters, homeostasis regulators, and potential drug discovery targets. Three-dimensional (3D)
structure determination of IMPs by X-ray crystallography, cryo-electron microscopy (cryo-EM), or
Nuclear Magnetic Resonance (NMR) methods remains a major challenge for structural biology.
While NMR can generally provide accurate 3D structures of small soluble proteins, structure
determination by solution NMR of IMPs, prepared in stabilizing membrane-mimicking environments
which generally require 2H,13C,15N-enrichment of the IMP, can be quite challenging. Evolutionary
couplings (ECs), evolutionarily-correlated mutations derived from multiple sequence alignments, can
also be used to provide information about native residue pair contacts, and to model the 3D
structures of IMPs. Combining EC and NMR data provides a powerful approach for overcoming
incompleteness of NMR NOESY data obtained for perdeuterated IMP samples, and the challenges in
identifying true native protein structure contacts from the phylogenetic EC analysis. In particular,
inter-helical contact information that is difficult to obtain for perdeuterated IMPs by NMR is well
represented in the sequence co-variance EC data. Our goals are to develop a robust, reproducible,
and fully automated EC-NMR platform suitable for accurate and reliable structure determination of
IMPs, particularly α-helical IMPs, and apply these methods for 3D structure analysis of biomedically-
important IMPs. EC-NMR will be further developed using β-barrel and α-helical IMPs of known
structure, and then applied to studies of IMPs of unknown structure selected from designated NIH
NIAID priority pathogenic bacteria. We will (i) further develop and apply the Single Protein Production
(SPP) method for producing isotope-enriched IMPs in E. coli, (ii) implement a micro-scale NMR
screening pipeline for IMP sample optimization, (iiii) rigorously and comprehensively address the
question of how EC and NOESY data quality and quantity correlate with the accuracy of EC-NMR
structures, (iv) design improved algorithms for structure determination of IMPs combining ECs and
NMR data, and (v) develop tools for validation of IMP structures determined by both conventional
NMR and EC-NMR methods. Advanced molecular modeling methods will be implemented to improve
accuracy of EC-NMR structures. ECs will also be combined with NMR data to identify and determine
structures of multiple “native states” of proteins. This study will expand the range of proteins that can
be studied by NMR, provide more accurate structural and dynamic information than can be obtained
with existing methods, and provide fundamental structural information needed for future antibiotic
drug development targeted to high-priority pathogens.
项目摘要
整合膜蛋白(IMP)包括许多生物医学上重要的门控蛋白,受体,
转运蛋白、稳态调节剂和潜在的药物发现靶点。三维(3D)
通过X射线晶体学、低温电子显微镜(cryo-EM)或
核磁共振(NMR)方法仍然是结构生物学的主要挑战。
虽然NMR通常可以提供小的可溶性蛋白质的精确3D结构,但结构
通过溶液NMR测定在稳定膜模拟环境中制备的IMP
这通常需要IMP的2 H、13 C、15 N富集,可能相当具有挑战性。进化
偶联(EC),来自多个序列比对的进化相关突变,可以
也可用于提供有关天然残基对接触的信息,并对3D
IMP的结构。结合EC和NMR数据提供了一种强大的方法,
全氘代IMP样品NMR NOESY数据的不完整性,以及
从所述系统发育EC分析鉴定真正的天然蛋白质结构接触。特别是,
螺旋间的接触信息,这是很难获得全氘代IMP的NMR是很好的
表示在序列协方差EC数据中。我们的目标是开发一个强大的,可重复的,
和全自动EC-NMR平台,适用于准确可靠的结构测定,
IMP,特别是α-螺旋IMP,并将这些方法应用于生物医学-
重要的IMP。EC-NMR将进一步发展使用已知的β-桶和α-螺旋IMP
结构,然后应用于从指定NIH中选择的未知结构的IMP的研究
NIAID优先致病菌。我们将(i)进一步开发和应用单一蛋白生产
(SPP)在大肠杆菌中生产同位素富集的IMP的方法。大肠杆菌,(ii)实现微尺度NMR
IMP样品优化的筛选管道,(iii)严格和全面地解决
EC和NOESY数据的质量和数量如何与EC-NMR的准确性相关的问题
结构,(iv)设计改进的算法,用于结合EC和
NMR数据,以及(v)开发用于验证由两种常规方法确定的IMP结构的工具
NMR和EC-NMR方法。先进的分子建模方法将被实施,以改善
EC-NMR结构的准确性。EC还将与NMR数据相结合,
蛋白质的多种“天然状态”的结构。这项研究将扩大蛋白质的范围,
通过核磁共振研究,提供比可以获得的更准确的结构和动力学信息
与现有的方法,并提供未来抗生素所需的基本结构信息,
针对高优先级病原体的药物开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAETANO T MONTELIONE其他文献
GAETANO T MONTELIONE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAETANO T MONTELIONE', 18)}}的其他基金
Hybrid Methods for Dynamic Structure Analysis of Proteins from Pathogenic Microorganisms
病原微生物蛋白质动态结构分析的混合方法
- 批准号:
10418703 - 财政年份:2021
- 资助金额:
$ 51.6万 - 项目类别:
Hybrid Methods for Dynamic Structure Analysis of Proteins from Pathogenic Microorganisms
病原微生物蛋白质动态结构分析的混合方法
- 批准号:
10615157 - 财政年份:2021
- 资助金额:
$ 51.6万 - 项目类别:
Hybrid Methods for Dynamic Structure Analysis of Proteins from Pathogenic Microorganisms
病原微生物蛋白质动态结构分析的混合方法
- 批准号:
10205615 - 财政年份:2021
- 资助金额:
$ 51.6万 - 项目类别:
Membrane Protein Structure Using Evolutionary Couplings and Sparse NMR Data
使用进化耦合和稀疏 NMR 数据的膜蛋白结构
- 批准号:
10074763 - 财政年份:2017
- 资助金额:
$ 51.6万 - 项目类别:
Membrane Protein Structure Using Evolutionary Couplings and Sparse NMR Data
使用进化耦合和稀疏 NMR 数据的膜蛋白结构
- 批准号:
9978825 - 财政年份:2017
- 资助金额:
$ 51.6万 - 项目类别:
A Novel RNA Recognition Site on the Influenza B Virus NS1 Protein
乙型流感病毒 NS1 蛋白的新 RNA 识别位点
- 批准号:
8991480 - 财政年份:2015
- 资助金额:
$ 51.6万 - 项目类别:
600 MHZ NMR RF Console with 19F NMR Probe
带 19F NMR 探头的 600 MHZ NMR RF 控制台
- 批准号:
8640245 - 财政年份:2014
- 资助金额:
$ 51.6万 - 项目类别:
Structural Genomics of Eukaryotic Domain Families
真核域家族的结构基因组学
- 批准号:
8287754 - 财政年份:2010
- 资助金额:
$ 51.6万 - 项目类别:
Structural Genomics of Eukaryotic Domain Families
真核域家族的结构基因组学
- 批准号:
8255665 - 财政年份:2010
- 资助金额:
$ 51.6万 - 项目类别:
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 51.6万 - 项目类别:
Standard Grant