Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
基本信息
- 批准号:10559575
- 负责人:
- 金额:$ 38.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActomyosinAlginatesAnatomyAnionsAutomobile DrivingBiochemicalBiological ProcessBiomedical EngineeringBullaCancer BiologyCell NucleusCell VolumesCellsCellular biologyCollagenConfined SpacesCuesCytokinesisCytoplasmCytoskeletonDataDevelopmental BiologyDimensionsDiseaseDisease ProgressionDistantEmbryonic DevelopmentEventExtracellular MatrixFiberGelGoalsHealthHumanImaging DeviceIn VitroInvadedIon ChannelLamin Type ALightMechanical StressMechanicsMediatingMicrofluidicsModelingMolecularMyosin Type IINerveNuclearNuclear TranslocationOrganismPathway interactionsPatternPhenotypePhysiologicalProcessPropertyRegulationRoleRuptureScaffolding ProteinSpeedSupporting CellSurfaceSystemTechnologyTestingTissuesTravelVisualizationWorkYeastsanillincell motilityin vivoin vivo Modelinsightknock-downmechanical propertiesmechanotransductionmigrationnoveloptogeneticspolyacrylamidepressureresponsetoolviscoelasticity
项目摘要
Summary- Cells in vivo travel through confining three-dimensional (3D) pores between fibrillar extracellular
matrix (ECM) networks or channel-like tracks bordered by ECM bundles, vessels, myofibers or nerves. The
mechanisms enabling cell locomotion in diverse microenvironments are adaptive in response to the physical and
biochemical cues, such as confinement, stiffness, viscoelastic properties and composition of ECM. Adaptive
systems/modules include cell-ECM interactions, the actomyosin cytoskeleton and cell volume regulation.
Recently, we and others have also identified the key role of the nucleus in confined migration. However,
numerous fundamental and translational questions remain unanswered on the crosstalk between nuclear
mechanosensing, cytoskeleton and cell volume regulation, and their contributions to confined migration in health
and disease. The overarching goal of this project is to employ state-of-the-art bioengineering, materials and
imaging tools as well as in vivo models to provide a novel unified framework for efficient migration in confinement
by deciphering the interplay between nuclear mechanics, cytoskeleton and ion channels. This R01 application
will test the hypothesis that the nucleus senses and responds to physical confinement by exquisitely regulating
the spatial activation of RhoA along the longitudinal cell axis in confined spaces via the synergistic roles of
confinement-induced nuclear stiffening and anillin/Ect2 nuclear exit to the cytoplasm. This hypothesis is
supported by intriguing preliminary data showing that cell entry into confining µ-channels induces nuclear
stiffening which activates RhoA and supports ion channel-dependent nuclear blebbing and rupture. Nuclear
rupture induces the exit of anillin and the RhoGEF Ect2 from the nucleus to the cytoplasm. Anillin accumulates
specifically at the cell poles, where it locally bridges Ect2, RhoA and actomyosin, thereby exacerbating RhoA-
myosin II contractility. In Aim 1, we will decipher the mechanisms of anillin exit to the cytoplasm, and demonstrate
its critical role as a scaffolding protein, which bridges Ect2, RhoA and actomyosin at the cell poles, thereby
regulating the spatial activation of RhoA and bleb-based migration in confinement. We will also elucidate the
novel crosstalk between cell volume regulation and anillin/Ect2/RhoA in nuclear blebbing and rupture in
confinement. Lastly, we will decipher the contributions of nuclear pushing from the cell rear versus nuclear pulling
from the cell front (i.e., nuclear piston model) to migration as a function of the degree of confinement. In Aim 2,
we will extend the applicability of our findings to 3D gels and confining µ-channels of prescribed physiologically
relevant mechanical properties in vitro. We will also visualize the distinct localization patterns of anillin, Ect2 and
key ion channels in natural tissue tracks of different dimensions in vivo, and test how perturbations of these
molecules impact local and distant tissue invasion in vivo. This work will also develop and establish novel
bioengineering tools (e.g., optogenetic probes, µ-fluidic chamber) for better understanding cell motility in health
and disease.
总结-细胞在体内穿过纤维状细胞外基质之间的限制性三维(3D)孔
基质(ECM)网络或由ECM束、血管、肌纤维或神经界定的通道样轨迹。的
使细胞在不同微环境中运动的机制是适应性的,
生物化学线索,如限制,刚度,粘弹性和ECM的组成。自适应
这些系统/模块包括细胞-ECM相互作用、肌动球蛋白细胞骨架和细胞体积调节。
最近,我们和其他人也确定了核在有限迁移中的关键作用。然而,在这方面,
关于核武器与核武器之间的串扰,许多基本的和翻译的问题仍然没有答案。
机械感应,细胞骨架和细胞体积调节,以及它们对健康受限迁移的贡献
和疾病该项目的总体目标是采用最先进的生物工程,材料和
成像工具以及体内模型,以提供用于限制中的有效迁移的新颖的统一框架
通过破译核力学,细胞骨架和离子通道之间的相互作用。R 01应用程序
将检验这样一个假设,即细胞核通过精细地调节
RhoA沿着细胞纵轴在密闭空间中的空间激活,通过以下协同作用:
限制诱导的核硬化和anillin/Ect 2核退出细胞质。这种假设是
有趣的初步数据表明,细胞进入限制性的μ通道,
硬化,其激活RhoA并支持离子通道依赖性核起泡和破裂。核
破裂诱导苯胺醛和RhoGEF Ect 2从细胞核离开到细胞质。苯胺醛积累
特别是在细胞两极,在那里它局部桥接Ect 2,RhoA和肌动球蛋白,从而加剧RhoA。
肌球蛋白II收缩性。在目标1中,我们将破译苯胺醛退出细胞质的机制,并证明
它作为支架蛋白的关键作用,在细胞两极桥接Ect 2,RhoA和肌动球蛋白,从而
调节RhoA的空间激活和限制中基于水泡的迁移。我们亦会阐释
细胞体积调节与核泡形成和破裂中的苯胺醛/Ect 2/RhoA之间的新串扰
禁闭。最后,我们将破译的贡献,核推动从细胞后部与核拉
从电池正面(即,核活塞模型)迁移作为约束程度的函数。在目标2中,
我们将把我们的研究结果的适用性扩展到3D凝胶和限制规定的生理微通道,
体外相关力学性能。我们还将观察到苯胺醛、Ect 2和
在体内不同尺寸的天然组织中的关键离子通道,并测试这些通道的扰动如何影响
分子影响体内的局部和远端组织侵入。这项工作也将发展和建立新的
生物工程工具(例如,光遗传学探针,μ-流体室),以更好地了解健康中的细胞运动
和疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Konstantopoulos其他文献
Konstantinos Konstantopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Konstantopoulos', 18)}}的其他基金
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
- 批准号:
10358051 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
- 批准号:
10571938 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10338164 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10759092 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10582153 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10374917 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10381200 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
- 批准号:
10379292 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
- 批准号:
10622450 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10524192 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 38.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Postdoctoral Fellowships